Cho tam giác ABC. Các Tia phân giác của góc B và C cắt nhau tại I. Biết góc BIC = 140°. Số đo của góc A bằng bảo nhiêu 🥲🥲🥲
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem ở đường link này:
Câu hỏi của Cùng học toán đi - Toán lớp 6 - Học toán với OnlineMath
Hình vẽ a chèn không rõ được không, chắc giống của e thôi.
https://1drv.ms/u/s!AhUPZHs4UJtKilHrVZWqF8i6a584?e=0TIfMP
Ta có : \(\widehat{BIC}=180^0-\widehat{IBC}-\widehat{ICB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)
\(\Rightarrow\widehat{BIC}=180^0-\frac{\widehat{ABC}}{2}-\frac{\widehat{ACB}}{2}\)( Do IB,IC là tia phân giác của góc ABC và ACB)
còn \(\widehat{BKC}=180^0-\widehat{KBC}-\widehat{KCB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)
\(\Rightarrow\widehat{BKC}=180^0-\frac{\widehat{xBC}}{2}-\frac{\widehat{yCB}}{2}\)( Do KB,KC là tia phân giác của góc ABC và ACB)
Mà \(\hept{\begin{cases}\widehat{xBC}=180^0-\widehat{ABC}\\\widehat{yCB}=180^0-\widehat{ACB}\end{cases}}\)\(\Rightarrow\widehat{BKC}=180^0-\left(\frac{180^0-\widehat{ABC}}{2}+\frac{180^0-\widehat{ACB}}{2}\right)\)
\(\Rightarrow\widehat{BKC}=\frac{\widehat{ABC}}{2}+\frac{\widehat{ACB}}{2}\)
Xét tam giác IBC có: góc BIC + góc IBC + góc ICB = 180 độ ( định lý tổng 3 góc trong tam giác )
Mà góc BIC = 120 độ ( giả thiết ) => góc IBC + góc ICB = 180 độ - 120 độ = 60 độ
Vì BI là phân giác góc ABC ( giả thiết ) => góc IBC = \(\frac{1}{2}\)góc ABC
Vì CI là phân giác góc ACB ( giả thiết ) => góc ICB = \(\frac{1}{2}\)góc ACB
=>góc IBC + góc ICB = \(\frac{1}{2}\)góc ABC + \(\frac{1}{2}\)góc ACB = 60 độ
=> \(\frac{1}{2}\)( góc ABC + góc ACB ) = 60 độ
=> góc ABC + góc ACB = 120 độ
Xét tam giác ABC có: góc A + góc ABC + góc ACB = 180 độ ( định lý tổng 3 góc trong tam giác )
=> góc A + 120 độ = 180 độ
=> góc A = 60 độ
Kẻ tia phân giác Ax của tam giác ABC. Theo tính chất góc ngoài của tam giác, dễ có \(\widehat{BIx}=\widehat{IBA}+\widehat{IAB}\) và \(\widehat{CIx}=\widehat{ICA}+\widehat{IAC}\). Cộng theo vế 2 đẳng thức trên, thu được \(\widehat{BIC}=\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}+\widehat{ABC}\) \(=\dfrac{180^o+\widehat{ABC}}{2}\) \(=90^o+\dfrac{\widehat{BAC}}{2}\)
Tới đây mình cũng đã chứng minh xong câu b luôn rồi. Bạn chỉ cần thay số đo góc vào thì tính được câu a.
a) (BI và CI lần lượt là các đường phân giác của góc B và C)
Theo đề ta có:
\(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^o\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=180^o-\widehat{BIC}=180^o-140^o=40^o\)
Mà \(\widehat{ABI}=\widehat{CBI}\) và \(\widehat{ACI}=\widehat{BCI}\) (vì BI và CI lần lượt là các đường phân giác của góc B và C)
Suy ra \(\widehat{ABC}+\widehat{ACB}=2\widehat{IBC}+2\widehat{ICB}=2\left(\widehat{IBC}+\widehat{ICB}\right)=2\cdot40^o=80^o\)
Từ đó
\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)
\(\Leftrightarrow\widehat{BAC}=180^o-\left(\widehat{ABC}+\widehat{ACB}\right)=180^o-80^o=100^o\)
Tổng của góc ABC và góc ACB là 180o-80o = 100o
\(\widehat{IBC}=\frac{\widehat{ABC}}{2}\)
\(\widehat{ICB}=\frac{\widehat{ACB}}{2}\)
\(\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{100^o}{2}=50^o\)
Xét tam giác IBC :
\(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-50^o=130^o\)
Vậy ...
Ta có: góc C = 70 độ
=> góc BCI = 35 độ
=> góc IBC = 25
=> góc B = 50 độ
=> góc A = 60 độ
Vậy tam giác ABC có góc A = 60 độ; góc B = 50 độ; góc C = 70 độ
\(\widehat{IBC}+\widehat{ICB}=180^0-140^0=40^0\)
\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=2\cdot40^0=80^0\)
\(\Leftrightarrow\widehat{BAC}=100^0\)