K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2016

m2+2014=n2

=>n2-m2=2014

=>(n-m)(n+m)=2014=2014*1=1007*2=19*53

m thuoc N => n+m>n-m 

TH1:n-m=1;n+m=2014 =>m=1006.5(loai)

TH2:n-m=2;n+m=1007 => m=502.5(loai)

TH3;n-m=19;n+m=53 =>m=17

KL:m=17

29 tháng 7 2016

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:

Đặt $n+1995=a^2, n+2014=b^2$ với $a,b\in\mathbb{N}$

Khi đó:

$(n+2014)-(n+1995)=b^2-a^2$

$\Leftrightarrow 19=b^2-a^2=(b-a)(b+a)$

Vì $b,a$ là 2 số tự nhiên nên $b+a> b-a$. Vì $b+a>0, (b+a)(b-a)=19>0$ nên $b-a>0$

Suy ra $b+a=19; b-a=1$

$\Rightarrow b=10$

$\Rightarrow n+2014=b^2=10^2=100\Rightarrow n=-1914$

22 tháng 5 2016

c đề thiếu 

22 tháng 5 2016

thiếu gì vậy bạn

4 tháng 9 2023

...

14 tháng 9 2016

Nếu n là số nguyên và   \(n^2+2014=k^2\)  (k nguyên).

\(\Rightarrow\)                                 \(k^2-n^2=2014\)

\(\Rightarrow\)               \(\left(k+n\right)\left(k-n\right)=2014\)

Nếu k và n là 2 số nguyên thì k+n và k-n sẽ cùng chẵn hoặc cùng lẻ.

Vì tích của k+n và k-n là số chẵn. Nên k+n và k-n sẽ cùng là hai số chẵn. Vì tích của hai số chẵn luôn chia hết cho 4. Nhưng 2014 không chia hết cho 2014.

Vậy không có   \(n\in Z\) thỏa mãn đề bài.