tìm m thuộc N sao cho m2+2014 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì số chính phương khi chia cho 4 chỉ có thể chia hết hoặc dư 1 mà 2014 chia 4 dư 2
suy ra n2+2014n2+2014 chia 4 dư 2 hoặc dư 3.
Vậy n2+2014n2+2014 không là số chính phương.
Giả sử tồn tại m \(\in\)N để m2 + 2014 là số chính phương
=> m2 + 2014 = n2 ( n \(\in\)N*)
n2 - m2 = 2014
Xét : (n - m )( m+n) = (n-m)n + (n-m)m = n2 - m.n + m.n - m2 = n2 - m2
( n-m)( n + m) = 2014 (1)
Thấy ( n-m )+( n + m) = 2n là số chẵn
Vậy n -m và n +m là hai số cùng chẵn hoặc cùng lẻ
(n -m)(n+m) = 2014 là 1 số chẵn
=> n - m và n + m không thể là hai số lẻ
=> n - m và n + m không thể là hai số chẵn.
=> n - m = 2p và m +n = 2q ( p;q \(\in\)N)
=> (n-m)(n +m) = 2p . 2q = 4pq
=> (n-m)(n+m) \(⋮\)4 (2)
Mà 2014 \(⋮̸\)4 (3)
Từ (1),(2),(3) => Giả sử này sai => không có m t/m
a,n=1 thì tm
n=2 thì ko tm
n=3 thì tm
n=4 thì ko tm
n >= 5 thì n! chia hết cho 2 và 5 => n! có tận cùng là 0
Mà 1!+2!+3!+4! = 33
=> 1!+2!+3!+4!+.....+n! có tận cùng là 3 nên ko chính phương
Vậy n thuộc {1;3}
k mk nha
n^2+3n=a^2 nhân 4 lên 4n^2+12n=4a^2
4n^2+12n+9-9=4a^2
(2n-3)^2 - 4a^2 = 9
(2n-2a-3)(2n+2a-3) = 9
Lập bảng ra
m2+2014=n2
=>n2-m2=2014
=>(n-m)(n+m)=2014=2014*1=1007*2=19*53
m thuoc N => n+m>n-m
TH1:n-m=1;n+m=2014 =>m=1006.5(loai)
TH2:n-m=2;n+m=1007 => m=502.5(loai)
TH3;n-m=19;n+m=53 =>m=17
KL:m=17