tìm m thuộc N sao cho m2+2014 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Lời giải:
Đặt $n+1995=a^2, n+2014=b^2$ với $a,b\in\mathbb{N}$
Khi đó:
$(n+2014)-(n+1995)=b^2-a^2$
$\Leftrightarrow 19=b^2-a^2=(b-a)(b+a)$
Vì $b,a$ là 2 số tự nhiên nên $b+a> b-a$. Vì $b+a>0, (b+a)(b-a)=19>0$ nên $b-a>0$
Suy ra $b+a=19; b-a=1$
$\Rightarrow b=10$
$\Rightarrow n+2014=b^2=10^2=100\Rightarrow n=-1914$
Nếu n là số nguyên và \(n^2+2014=k^2\) (k nguyên).
\(\Rightarrow\) \(k^2-n^2=2014\)
\(\Rightarrow\) \(\left(k+n\right)\left(k-n\right)=2014\)
Nếu k và n là 2 số nguyên thì k+n và k-n sẽ cùng chẵn hoặc cùng lẻ.
Vì tích của k+n và k-n là số chẵn. Nên k+n và k-n sẽ cùng là hai số chẵn. Vì tích của hai số chẵn luôn chia hết cho 4. Nhưng 2014 không chia hết cho 2014.
Vậy không có \(n\in Z\) thỏa mãn đề bài.
m2+2014=n2
=>n2-m2=2014
=>(n-m)(n+m)=2014=2014*1=1007*2=19*53
m thuoc N => n+m>n-m
TH1:n-m=1;n+m=2014 =>m=1006.5(loai)
TH2:n-m=2;n+m=1007 => m=502.5(loai)
TH3;n-m=19;n+m=53 =>m=17
KL:m=17