tìm nghiệm của Q(x) = 10x - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề : \(M\left(x\right)=-10x^4+2-x^2\)
Đặt \(x^2=t\left(t\ge0\right)\)
Suy ra : \(-10t^2+2-t=0\)
\(\left(-2t-1\right)\left(5t-2\right)=0\)
\(t=-\frac{1}{2};t=\frac{2}{5}\)
Với \(t=-\frac{1}{2}\Rightarrow x^2=-\frac{1}{2}\left(voli\right)\)
Với \(t=\frac{2}{5}\Rightarrow x^2=\frac{2}{5}\Rightarrow x=\frac{\sqrt{10}}{5}\)
Câu 1 :
Ta có: \(f\left(x\right)=0\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x+1\right)^2-4=0\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
Vậy \(x\in\left\{-5;3\right\}\)là nghiệm của đa thức f(x)
Câu 2 :
\(q\left(x\right)=x^2-10x+29\)
\(=\left(x-5\right)^2+4\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-5\right)^2+4\ge4\forall x\)
Vậy đa thức trên ko có nghiệm
dễ mà
câu 1
f(x)=x^2+2x-3
ta có f(x)=0
suy ra x^2+2x-3=0
tương đương:x^2-x+3x-3=0
tương đương:x(x-1)+3(x-1)=0
tương đương: (x-1)(x+3)=0
tương đương: x-1=0 x=1
x+3=0 x=-3
vậy đa thức f(x) có hai nghiệm là 1 và -3
câu 2: x^2-10x+29
tương đương: x^2-5x-5x+25+4
tương đương: x(x-5)-5(x-5)+4
tương đương: (x-5)(x-5)+4
tương đương: (x-5)^2+4
vì (x-5)^2> hoặc bằng 0 với mọi x
4>0
suy ra x^2-10x+29 vô nghiệm
Đặt \(D\left(x\right)=3x^2+10x-8x=3x^2+2x=0\)
\(\Leftrightarrow x\left(3x+2\right)=0\Leftrightarrow x=0;x=-\frac{2}{3}\)
Vậy tập nghiệm đa thức D(x) là S = { -2/3 }
phân tích thành nhân tử thì dc chứ tìm nghiệm mà ko có kết quả thì chịu
a,x2 +10x + 16= x2 + 2x +8x+16=x(x+2)+8(x+2)=(x+8)(x+2)
b, x2 - 6x - 7 = x2 + x - 7x -7= x(x+1)-7(x+1)=(x-7)(x+1)
c,mình ko làm dc
a/ Ta có \(f\left(x\right)=x^2+10x+16\)
Khi f (x) = 0
=> \(x^2+10x+16=0\)
=> \(x^2+2x+8x+16=0\)
=> \(\left(x^2+2x\right)+\left(8x+16\right)=0\)
=> \(x\left(x+2\right)+8\left(x+2\right)=0\)
=> \(\left(x+2\right)\left(x+8\right)=0\)
=> \(\orbr{\begin{cases}x+2=0\\x+8=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-2\\x=-8\end{cases}}\)
Vậy f (x) có 2 nghiệm: x1 = -2; x2 = -8.
b/ Ta có \(g\left(x\right)=x^2-6x-7\)
Khi g (x) = 0
=> \(x^2-6x-7=0\)
=> \(x^2+x-7x-7=0\)
=> \(\left(x^2+x\right)-\left(7x+7\right)=0\)
=> \(x\left(x+1\right)-7\left(x+1\right)=0\)
=> \(\left(x+1\right)\left(x-7\right)=0\)
=> \(\orbr{\begin{cases}x+1=0\\x-7=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-1\\x=7\end{cases}}\)
Vậy g (x) có 2 nghiệm: x1 = -1; x2 = 7.
c) Bó tay...
P - 2Q = x^4 + 10x^3 + 23x^2 - 10x - 24
= x^4 - x^3 + 11x^3 - 11x^2 + 34x^2 - 34x + 24x - 24
= (x - 1)(x^3 + 11x^2 + 34x +24)
= (x-1)(x^3+x^2+10x^2+10x+24x+24)
= (x-1)(x+1)(x^2 + 10x + 24)
=> P - 2Q có x = 1 và x= -1 là nghiệm của pt
P - 2Q = x^4 + 10x^3 + 23x^2 - 10x - 24
= x^4 - x^3 + 11x^3 - 11x^2 + 34x^2 - 34x + 24x - 24
= (x - 1)(x^3 + 11x^2 + 34x +24)
= (x-1)(x^3+x^2+10x^2+10x+24x+24)
= (x-1)(x+1)(x^2 + 10x + 24)
=> P - 2Q có x = 1 và x= -1 là nghiệm của pt
\(a\left(x\right)=10x-7\\ a\left(x\right)=0\Rightarrow10x-7=0\Rightarrow x=\dfrac{7}{10}\)
Vậy nghiệm của \(a\left(x\right)\) là \(x=\dfrac{7}{10}\)
\(b\left(x\right)=16x^2-x\\ b\left(x\right)=0\Rightarrow16x^2-x=0\Rightarrow x\left(16x-1\right)=0\)
TH1: \(x=0\)
TH2: \(16x-1=0\Rightarrow x=\dfrac{1}{16}\)
Vậy nghiệm của \(b\left(x\right)\) là \(x=0,x=\dfrac{1}{16}\)
ta có:
10x - 2 = 0
=> 10x = 0+2 = 2
=> x = 2/10 = 1/5
vậy 1/5 là nghiệm của Q(x)