S = 2/2.4 + 2/4.6 + 2/6.8 + ........ + 2/18.20
M = 1/3.7 + 1/7.11 + 1/11.15 + 1/15.19 + ........
a) Tim so hang thu 50 cua tong tren.
b) Tính tổng trên đến số hạng thứ 50.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc là đề thiếu: \(y=\frac{1}{2}-\frac{1}{3\cdot7}-\frac{1}{7\cdot11}-\frac{1}{11\cdot15}-\frac{1}{15\cdot19}-\frac{1}{19\cdot23}-\frac{1}{23\cdot27}\)
\(y=\frac{1}{2}-\left(\frac{1}{3\cdot7}+\frac{1}{7\cdot11}+...+\frac{1}{23\cdot27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+...+\frac{4}{23\cdot27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\frac{8}{27}=\frac{23}{54}\)
Ta có : \(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)
\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}=\frac{1}{2}-\frac{2}{27}=\frac{23}{54}\)
Trả lời:
\(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)
\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}\)
\(=\frac{1}{2}-\frac{2}{27}\)
\(=\frac{23}{54}\)
Học tốt
Số hạng thứ 50 của dãy là: \(\frac{1}{100.102}\)
Tổng 50 số hạng đầu của dãy là:\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{100.102}=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{100}-\frac{1}{102}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{102}\right)=\frac{1}{2}.\frac{25}{51}=\frac{25}{102}\)
phân số thứ 50 là 1/98.100
1/2.4+1/4.6+1/6.8+.......+1/98.100
=2.(1/2-1/4+1/4-1/6+1/6-1/8+.........+1/98-1/100).1/2
=(1-1/2+1/2-1/3+1/3-1/4+...........+1/49-1/50).1/2
=(1-1/50).1/2
=49/50.1/2
=49/100
Số hạng thứ 50 theo quy luật là: \(\frac{1}{100.102}\)
Gọi tổng 50 số hạng đầu là S
Ta có: \(S=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{100.102}\)
\(\Leftrightarrow2S=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{100.102}\)
\(\Leftrightarrow2S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{102}=\frac{1}{2}-\frac{1}{102}=\frac{25}{51}\)
\(\Rightarrow S=\frac{25}{51}:2=\frac{25}{102}.\)
\(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-...-\frac{1}{23.27}=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{23.27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\frac{8}{27}=\frac{23}{54}\)
a) Mình ko ghi lại đề nhé!
= \(\frac{1}{2}\) - ( \(\frac{1}{3.7}\) + \(\frac{1}{7.11}\) + ... + \(\frac{1}{23.27}\) )
= \(\frac{1}{2}\) - \(\frac{1}{4}\) . ( \(\frac{1}{3}\) - \(\frac{1}{7}\) + \(\frac{1}{7}\) - .... - \(\frac{1}{27}\) )
= \(\frac{1}{2}\) - \(\frac{1}{4}\) . ( \(\frac{1}{3}\) - \(\frac{1}{27}\) )
= \(\frac{1}{2}\) - \(\frac{1}{4}\) . \(\frac{8}{27}\)
= \(\frac{1}{2}\) - \(\frac{2}{27}\) = \(\frac{23}{54}\)
b) ..............................................................................
= \(\frac{1}{5}\) . ( \(\frac{5}{5.10}\) - \(\frac{5}{10.15}\) - ... - \(\frac{5}{95.100}\) )
= \(\frac{1}{5}\) . ( \(\frac{1}{5}\) - \(\frac{1}{10}\) + \(\frac{1}{10}\) - ... - \(\frac{1}{100}\) )
= \(\frac{1}{5}\) . ( \(\frac{1}{5}\) - \(\frac{1}{100}\) )
= \(\frac{1}{5}\) . \(\frac{19}{100}\)
= \(\frac{19}{500}\)
k mình nha! Chúc bạn học tốt và được nhiều k!
\(S=\dfrac{1}{2}-\dfrac{1}{3.7}-\dfrac{1}{7.11}-...........-\dfrac{1}{23.27}\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{3.7}+\dfrac{1}{7.11}+..........+\dfrac{1}{23.27}\right)\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+.......+\dfrac{1}{23}-\dfrac{1}{27}\right)\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\)
\(=\dfrac{1}{2}-\dfrac{8}{27}\)
\(=\dfrac{11}{54}\)
Bạn xem lại đề bài đi chứ thế này thì cần j phải so sánh nx
Này nhé: đã có \(\dfrac{1}{2}=2^{-1}\) mà \(2^{-1}< 2^{51}\) là điều quá rõ rồi
Đã thế lại còn trừ liên hoàn từ... (đấy nói chung là phần sau) thì rõ ràng hiển nhiên là \(S< 2^{51}\) còn cái j nx
Chúc bn học tốt