Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vé hình giống của ((Me)) nhé ..
a, AB=AC (gt)
\(\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow\hept{\begin{cases}AN=AM\\CM=BN\end{cases}}\)
Xét 2 \(\Delta ABM\)và \(\Delta CAN\)có:
góc A chung
AB=AC(gt)
\(AN=AM\)( cmt)
\(\Rightarrow\Delta AMB=\Delta ACN\left(c.g.c\right)\)
Xét 2 \(\Delta BMC\)Và \(\Delta CNB\)Có:
Cạnh BC chung
Góc \(ABC\)= góc \(ACB\)
\(BN=CM\)(Cmt)
\(\Rightarrow\Delta NBC=\Delta MCB\left(c.g.c\right)\)
Từ A Kẻ \(AK\perp BC\)
\(\Rightarrow\)AK là đường phân giác của \(\Delta ABC\)(Vì \(\Delta ABC\)Là tam giác cân )
\(\Rightarrow NAK=KAC\)
gọI O là gia điểm của hai đường chéo CF và BE
Xét 2 \(\Delta ANO\)Và \(\Delta AMO\)Có :
Góc \(NAO\)= Góc \(MAO\)(Cmt)
Cạnh \(AO\)Chung
\(AN=AM\)(Theo câu a)
\(\Rightarrow\Delta ANO=\Delta AMO\left(C.g.c\right)\)
\(\Rightarrow ANO=AMO\)(Cặp góc tương ứng )
Ta có : góc \(FNA+ANO=180^O\)(Cặp góc kề bù )
góc \(EMA+AMO=180^O\)(Cặp góc kề bù )
Mà góc \(ANO=AMO\)(Cmt)
\(\Rightarrow EMA=FNA\)
vÌ \(\Delta ABC\)Cân và N ,M lần lượt là trung điểm của AB,AC
\(\Rightarrow CN=BM\)
\(\Rightarrow NF=ME\)
xÉT 2 \(\Delta AFN\)VÀ \(\Delta AEM\)có :
góc \(ANF=EMA\)(Cmt)
\(AM=AN\)(Cmt)
\(FN=ME\)(Cmt)
\(\Rightarrow\DeltaÀFN=\Delta AEM\left(C.g.c\right)\)
\(\Rightarrow AF=AE\)(CẶP CẠNH TƯƠNG ỨNG )
\(\Rightarrow A\)Là trung điểm của EF
Lấy I là gia điểm của NM và AK
Vì \(\Delta ABC\)là tam giác cân
\(\Rightarrow AK\)\(\perp MN\)
Ta có : \(\hept{\begin{cases}MN\perp AK\\BC\perp AK\end{cases}}\Rightarrow MN\)// \(BC\)(Tính chất từ vuông góc đến song song)
Vì tg ABC cân tại A(gt), đường cao AH
=> AH đồng thời là đi trung trực của tgABC
=> BH=HC
Xét ΔEBH và ΔFCH có
EB=FC(gt)
ˆB=ˆC( vì tg ABC cân tại A)
BH=CH(cmt)
Do đó: ΔEBH=ΔFCH
Suy ra: HE=HF
hay H nằm trên đường trung trực của EF(1)
Ta có: AE=AF
Điểm A nằm trên đường trung trực của EF(2)
Từ (1) và (2): => E và F đối xứng nhau qua AH
Xét ΔABE và ΔACF có
AB=AC
\(\widehat{A}\) chung
AE=AF
Do đó: ΔABE=ΔACF
Suy ra: BE=CF
b) Xét ΔEBC vuông tại E và ΔFCB vuông tại F có
BC chung
\(\widehat{ECB}=\widehat{FBC}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔEBC=ΔFCB(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{EBC}=\widehat{FCB}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF(Cạnh huyền-góc nhọn)
Hình tự vẽ nha bạn
a) Vì E và F lần lượt là trung điểm của AB và AC
\(\Rightarrow\)AE=EB và AF=FC
Vì tam giác ABC cân tại A nên AB=AC
\(\Rightarrow\)\(\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow AE=AF;EB=FC\)
Xét tam giác AFB và tam giác AEC có:
AF=AE(chứng minh trên)
\(\widehat{A}\)chung
AB=AC(gt)
\(\Rightarrow\)tam giác AFB=tam giác AFC(c-g-c)
=> FB=EC(2 cạnh tương ứng)
b) Vì F là trung điểm của AC nên BF là trung tuyến của tam giác ABC tại đỉnh B
Vì E là trung điểm của AB nên CE là trung tuyến của tam giác ABC tại đỉnh C
Vì FB=EC(chứng minh trên)
=> \(BG=\frac{2}{3}BF=\frac{2}{3}CE=CG\)
=> tam giác BGC cân tại G
c) Vì AE=AF(chứng minh trên)
\(\Rightarrow\)tam giác AEF cân tại A
\(\Rightarrow\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\)(1)
Tam giác ABC cân tại A
\(\Rightarrow\widehat{ACB}=\frac{\left(180^0-\widehat{A}\right)}{2}\)(2)
Từ (1) và (2) \(\Rightarrow\widehat{AFE}=\widehat{ACB}\)
Mà 2 góc này ở vị trí đồng vị \(\Rightarrow\)EF//BC