K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

Dễ dàng chứng minh được với mọi  \(x,y>0\) thì ta luôn có:

\(x^3+y^3\ge xy\left(x+y\right)\)  \(\left(\text{*}\right)\)

Thật vậy, xét hiệu  \(x^3+y^3-xy\left(x+y\right)=x^3-x^2y+-xy^2+y^3=x^2\left(x-y\right)-y^2\left(x-y\right)=\left(x-y\right)\left(x^2-y^2\right)\)

\(x^3+y^3-xy\left(x+y\right)=\left(x-y\right)^2\left(x+y\right)\ge0\)  (vì  \(\left(x-y\right)^2\ge0\)  với mọi  \(x,y\)  và  \(x+y>0\))

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(x-y=0\)  \(\Leftrightarrow\)  \(x=y\)

Vậy,  bất đẳng thức \(\left(\text{*}\right)\)  luôn đúng với mọi  \(x,y>0\)

Do đó, từ  \(\left(\text{*}\right)\)  ta suy ra:

\(x^3+y^3+xyz\ge xy\left(x+y\right)+xyz\)  (do  \(x,y,z>0\))

\(\Leftrightarrow\)  \(x^3+y^3+xyz\ge xy\left(x+y+z\right)\)

\(\Leftrightarrow\)  \(x^3+y^3+1\ge xy\left(x+y+z\right)\)  (do  \(xyz=1\))

Khi đó, vì hai vế  của bđt trên cùng dấu nên ta lấy nghịch đảo hai vế và đổi chiều bất đẳng thức, tức là:

\(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\)   \(\left(1\right)\)

\(\Leftrightarrow\)  \(\frac{1}{x^3+y^3+1}\le\frac{xyz}{xy\left(x+y+z\right)}\)  (do  \(xyz=1\))

\(\Leftrightarrow\)  \(\frac{1}{x^3+y^3+1}\le\frac{z}{x+y+z}\)

Hoàn toàn tương tự với vòng hoán vị  \(x\)  \(\rightarrow\)  \(y\)  \(\rightarrow\)  \(z\), ta cũng chứng minh được:

\(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\)  \(\left(2\right)\)  và  \(\frac{1}{z^3+x^3+1}\le\frac{y}{x+y+z}\)  \(\left(3\right)\)

Cộng từng vế  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\), ta được:

\(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(x=y=z=1\)