cho tam giác ABC có góc A= 3 góc B= 6 góc C
a) tìm số đo góc A, góc B, góc C
b) kẻ AD vuông góc với BC, D thuộc BC. CM: AD<BD<CD
giúp mk nha mk cảm ơn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)
Ta có: \(\widehat{A}:\widehat{B}:\widehat{C}=6:2:1\)
nên \(\dfrac{\widehat{A}}{6}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}\)
mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(cmt)
nên \(\dfrac{\widehat{A}}{6}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{6+2+1}=\dfrac{180^0}{9}=20^0\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{\widehat{A}}{6}=20^0\\\dfrac{\widehat{B}}{2}=20^0\\\dfrac{\widehat{C}}{1}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{A}=120^0\\\widehat{B}=40^0\\\widehat{C}=20^0\end{matrix}\right.\)
Vậy: \(\widehat{A}=120^0\); \(\widehat{B}=40^0\); \(\widehat{C}=20^0\)
B=\(\dfrac{A}{3}\) ,C=\(\dfrac{A}{6}\)
⇒\(\dfrac{A}{18}\) =\(\dfrac{B}{6}\) =\(\dfrac{C}{3}\)= và A+B+C=180o
áp dụng tính chất của dãy tỉ số =nhau ,ta có :
\(\dfrac{A}{18}\)=\(\dfrac{B}{6}\) =\(\dfrac{C}{3}\) =\(\dfrac{A+B+C}{18+6+3}\) =\(\dfrac{20}{3}\)
⇒\(\dfrac{A}{18}\) = \(\dfrac{20}{3}\)⇒ A= 20/3 x 18 = 120o
\(\dfrac{B}{6}\) =\(\dfrac{20}{3}\) ⇒ B=\(\dfrac{20}{3}\) x 6 = 40o
C = 180o-(120o+40o)=20o
a) Theo đề bài => A/3=B/6=C và A+B+C=180
Áp dụng tính chất dãy tỉ số bằng nhau =>A=54;B=108;C=18
b) Trong tam giác ABC có C<B=>AB<AC=>BD<CD
AD thì mình ko biết nữa, bạn coi lại đề coi đúng ko nhe