Tính tổng
S = 1+2+5+14+........+3^ n-1+1 / 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : S1 = 1 + (-3) + 5 + (-7) + .... + 17
= (1 - 3) + (5 - 7) + (9 - 11)+ (13 - 15) + 17
= -2 + -2 + -2 + -2 + 17
= -2 x 4 + 17
= -8 + 17
S1 = 9
S2 = (4 - 2) + (8 - 6) + (12 - 10) + (16 - 14) + -18
= 2 x 4 - 18
S2 = -10
S1 + S2 = 9 - 10 = -1
S1=1+(-3)+5+(-7)+...+17.
S1=-2+(-2)+....+(-2).(9 số -2).
S2=-2+4+(-6)+....+(-18)
S2=-2+(-2)+...+(-2).(9 số -2).
=> (-2).(9+9)=-36.
\(S=1+3+3^2+3^3+3^4+.....+3^{16}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.....+\left(3^{2014}+3^{2015}+3^{2016}\right)\)
\(=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+......+3^{2014}\left(1+3+3^2\right)\)
\(=1.13+3^3.13+.....+3^{2014}.13\)
\(=13\left(1+3^3+....+3^{2014}\right)⋮13\)
\(\Rightarrow S⋮13\)
#include<bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
int sum = 0;
for (int i = 1; i <= N; i++) {
if (sqrt(i) == (int)sqrt(i)) {
sum += i;
}
}
cout << sum << endl;
return 0;
}
S = (30/2 + 1/2) + (31/2 + 1/2) + (32/2 + 1/2) + (33/2 + 1/2) +..+ 3n-1/2 + 1/2
S = n.(1/2) + (1/2)[3^0 + 3^1 + 32 +...+ 3n-1]
S = n/2 + (3^n - 1)/4 = (3^n + 2n - 1)/4
S = (30/2 + 1/2) + (31/2 + 1/2) + (3²/2 + 1/2) + (3³/2 + 1/2) +..+ 3(n-1)/2 + 1/2
S = n.(1/2) + (1/2)[30 + 31 + 3² +...+ 3(n-1)]
S = n/2 + (3n - 1)/4 = (3n + 2n - 1)/4
\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}-\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+\dfrac{1}{8\cdot10}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}\right)-\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+\dfrac{2}{8\cdot10}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{9}\right)-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{8}{9}-\dfrac{1}{2}\cdot\dfrac{2}{5}\)
\(=\dfrac{4}{9}-\dfrac{1}{5}\)
\(=\dfrac{11}{45}\)
S = (3^0/2 + 1/2) + (3^1/2 + 1/2) + (3²/2 + 1/2) + (3³/2 + 1/2) +..+ 3^(n-1)/2 + 1/2
S = n.(1/2) + (1/2)[3^0 + 3^1 + 3² +...+ 3^(n-1)]
S = n/2 + (3^n - 1)/4 = (3^n + 2n - 1)/4
mình lớp 5 mong bạn thông cảm và