cho hai đường tròn (O,R) và (O`,R )cắt nhau ở Avà B a, tứ giác AOBO` là hình j vì sao b, biết AB bằng R , tính số đo các cung nhỏ AB , cung lớn AB thuộc 2 đường tròn trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác OAO'B có
OA=O'A=O'B=OB=R
nên OAO'B là hình thoi
b: Xét ΔOAO' có OA=O'A=OO'=R
nên ΔOAO' đều
=>\(\widehat{OAO'}=60^0\)
AOBO' là hình thoi
=>\(\widehat{OBO'}=\widehat{OAO'}=60^0\) và \(\widehat{AOB}=\widehat{AO'B}\)
AOBO' là hình thoi
=>\(\widehat{AOB}+\widehat{OAO'}=180^0\)
=>\(\widehat{AOB}=120^0\)
=>\(\widehat{AO'B}=120^0\)
Xét (O) có
\(\widehat{AOB}\) là góc ở tâm chắn cung AB
\(\widehat{AOB}=120^0\)
Do đó: sđ cung nhỏ AB=120 độ
sđ cung lớn AB trong (O) là:
360-120=240 độ
Xét (O') có
\(\widehat{AO'B}=120^0\)
\(\widehat{AO'B}\) là góc ở tâm chắn cung AB
Do đó: sđ cung nhỏ AB=120 độ
sđ cung lớn AB trong (O') là:
360-120=240 độ
c: ΔAOO' đều nên \(S_{AOO'}=\dfrac{AO^2\cdot\sqrt{3}}{4}=R^2\cdot\dfrac{\sqrt{3}}{4}\)
AOBO' là hình thoi
=>\(S_{AOBO'}=2\cdot S_{AOO'}\)
=>\(S_{AOBO'}=2\cdot\dfrac{R^2\sqrt{3}}{4}=\dfrac{R^2\sqrt{3}}{2}\)
Ta có:
OB = OC = R (vì B, C nằm trên (O; R))
DB = DC = R (vì B, C nằm trên (D; R))
Suy ra: OB = OC = DB = DC
Vậy tứ giác OBDC là hình thoi
a: góc OBA+góc OCA=180 độ
=>ABOC nội tiếp
b: Xét ΔOCB co OB=OC=BC
nen ΔOBC đều
=>góc OBC=60 độ
=>góc ABC=30 độ