C ho tam giác ABC cân tại A .Có góc A =40o .Trên tia đối của tia CB lấy điểm M sao cho CM=CA .Tính số đo góc AMB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
a: Đề sai rồi bạn
b: Xét ΔAMB và ΔCME có
MA=MC
\(\widehat{AMB}=\widehat{CME}\)
MB=ME
Do đó: ΔAMB=ΔCME
a: Xét ΔBAC và ΔB'A'C có
BC=B'C
\(\widehat{BCA}=\widehat{B'CA'}\)
CA=CA'
Do đó: ΔBAC=ΔB'A'C
Suy ra: \(\widehat{ABC}=\widehat{A'B'C}\)
Xét tứ giác ABDE có
C là trung điểm của AD
C là trung điểm của BE
Do đó: ABDE là hình bình hành
Suy ra: AB//DE
hay DE⊥AC
=>\(\widehat{CDE}=90^0\)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ACB}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)
\(\Leftrightarrow\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)
Ta có: \(\widehat{ACB}+\widehat{ACM}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{ACM}=180^0-\widehat{ACB}=180^0-70^0\)
\(\Leftrightarrow\widehat{ACM}=110^0\)
Xét ΔCAM có CA=CM(gt)
nên ΔCAM cân tại C(Định nghĩa tam giác cân)
Ta có: ΔCAM cân tại C(cmt)
nên \(\widehat{AMC}=\dfrac{180^0-\widehat{ACM}}{2}\)(Số đo của một góc ở đáy trong ΔAMC cân tại C)
\(\Leftrightarrow\widehat{AMB}=\dfrac{180^0-110^0}{2}=\dfrac{70^0}{2}\)
hay \(\widehat{AMB}=35^0\)
Vậy: \(\widehat{AMB}=35^0\)
vẽ hình ạ