Tìm GTNN của A= 7-x/x-5 với x thuộc Z
Giúp mình với ạ ! Tối nay cần ạ hạn là sáng mai trước 10h sáng ngày 2-1-2022 . Cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tr 10h à còn sớm
P=x2 - 2x + 5
=x2-2x+1+4
=(x-1)2+4
Ta thấy:\(\left(x-1\right)^2+4\ge0+4=4\)
Dấu = khi x=1
Vậy Pmin=4 <=>x=1
Q= 2x2 -6x
\(=2x^2-6x+\frac{9}{2}-\frac{9}{2}\)
\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}\)
\(=2\left(x-\frac{3}{2}\right)\left(x-\frac{3}{2}\right)-\frac{9}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Ta thấy:\(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge0-\frac{9}{2}=-\frac{9}{2}\)
Dấu = khi x=3/2
Vậy Qmin=-9/2 <=>x=3/2
P = x2 - 2x + 5 = x(x - 2) + 5 nhỏ nhất khi x(x - 2) nhỏ nhất .
Xét x(x - 2) < 0 (để nhỏ nhất) thì x và x - 2 khác dấu mà x > x - 2 nên x > 0 > x - 2 => 2 > x > 0 => x = 1 => x(x - 2) = -1
Vậy P min = -1 + 5 = 4
Q = 2x2 - 6x = 2x(x - 3) nhỏ nhất khi x(x - 3) nhỏ nhất
Xét x(x - 3) < 0 (để nhỏ nhất) thì x và x - 3 khác dấu mà x > x - 3 nên x > 0 > x - 3 => 3 > x > 0 => x = 1;2
Ta thấy x(x - 3) = -2 tại x = 1 và x = 2 nên [x(x - 3)]min = -2 => Qmin = -2.2 = -4
\(\dfrac{x}{9}\) < \(\dfrac{4}{7}\) < \(x\) + \(\dfrac{1}{9}\)
\(\dfrac{7x}{63}\) < \(\dfrac{36}{63}\) < \(\dfrac{63x}{63}\) + \(\dfrac{7}{63}\)
7\(x\) < 36 < 63\(x\) + 7
⇒\(\left\{{}\begin{matrix}7x< 36\\63x+7>36\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\63x>36-7\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\63x>29\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\x>\dfrac{29}{63}\end{matrix}\right.\)
\(\dfrac{29}{63}\)< \(x\) < \(\dfrac{36}{7}\) vì \(x\in\) Z nên \(x\in\) { 1; 2; 3; 4; 5}
⇒ \(\dfrac{x}{9}\) = \(\dfrac{1}{9}\); \(\dfrac{2}{9}\); \(\dfrac{3}{9}\); \(\dfrac{4}{9}\);\(\dfrac{5}{9}\)
\(\dfrac{x}{9}< \dfrac{4}{7}< \dfrac{x+1}{9}\)
=>\(\dfrac{7x}{63}< \dfrac{36}{63}< \dfrac{7x+7}{63}\)
\(\Rightarrow7x< 36< 7x+7\)
\(\Rightarrow x< \dfrac{36}{7}< x+1\)
\(\Rightarrow x< 5\dfrac{1}{7}< x+1\)
\(\Rightarrow x=5\)
a) \(\dfrac{1}{2}-\left(x+\dfrac{1}{3}\right)=\dfrac{5}{6}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{1}{2}-\dfrac{5}{6}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{-1}{3}\)
\(\Rightarrow x=\dfrac{-1}{3}-\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{-2}{3}\)
b)\(\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\)
\(\Rightarrow x+\dfrac{1}{2}=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\Rightarrow x+\dfrac{1}{2}=\dfrac{-1}{20}\)
\(\Rightarrow x=\dfrac{-1}{20}-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{-11}{20}\)
c) \(\dfrac{3}{35}-\left(\dfrac{3}{5}+x\right)=\dfrac{2}{7}\)
\(\Rightarrow\dfrac{3}{5}+x=\dfrac{3}{35}-\dfrac{2}{7}\)
\(\Rightarrow\dfrac{3}{5}+x=\dfrac{-1}{5}\)
\(\Rightarrow x=\dfrac{-1}{5}-\dfrac{3}{5}\)
\(\Rightarrow x=\dfrac{-4}{5}\)
d)\(\dfrac{2}{3}.x=\dfrac{4}{27}\)
\(\Rightarrow x=\dfrac{4}{27}:\dfrac{2}{3}\)
\(\Rightarrow x=\dfrac{2}{9}\)
e) \(\dfrac{-3}{5}.x=\dfrac{21}{10}\)
\(\Rightarrow x=\dfrac{21}{10}:\dfrac{-3}{5}\)
\(\Rightarrow x=\dfrac{-7}{2}\)
Câu 2:
uses crt;
var a:array[1..100]of integer;
i,n,t:integer;
begin
clrscr;
write('Nhap n='); readln(n);
for i:=1 to n do
begin
write('A[',i,']='); readln(a[i]);
end;
t:=0;
for i:=1 to n do
if (4<a[i]) and (a[i]<15) then t:=t+a[i];
writeln(t);
readln;
end.
TL
GTNN = -1
xin lỗi bạn, mình chỉ biết đáp án không biết cách làm :((
Answer:
\(A=\frac{7-x}{x-5}\left(ĐK:x\ne5\right)\)
\(=\frac{-x+5+2}{x-5}\)
\(=\frac{-\left(x-5\right)+2}{x-5}\)
\(=-1+\frac{2}{x-5}\)
Để cho biểu thức A đạt giá trị nhỏ nhất thì \(-1+\frac{2}{x-5}\) nhỏ nhất
\(\Rightarrow\frac{2}{x-5}\) nhỏ nhất
\(\Rightarrow x-5\) lớn nhất
\(\Rightarrow x-5=-1\Leftrightarrow x=4\)
Vậy giá trị nhỏ nhất của biểu thức A = -3 khi x = 4