Kéo dài trung tuyến AM của tam giác ABC đoạn MD của độ dài bằng 1/3 AM. Gọi G là trọng tâm của tam giác ABC
So sánh cạnh tam giác BGD với trung tuyến của tam giác ABC
Giúp mình với sáng mai mình ik hk rồi
# Please help me !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
AM,BE,CF là trung tuyến
AM,BE,CF cắt nhau tại G
=>G là trọng tâm
=>AG=2/3AM và BG=2/3BE và CG=2/3CF
=>AG=2GM=GD
=>G là trung điểm của AD
=>M là trung điểm của GD
Xét tứ giác BGCD có
M là trung điểm chung của BC và GD
=>BGCD là hbh
=>BG=CD và CG=BD
BG=2/3BE
=>BG<BE
CG=2/3CF
=>BD=2/3CF
=>BD<CF
GD=AG=2/3AM
=>GD<AM
=>Các cạnh của ΔBGD nhỏ hơn các trung tuyến của ΔABC
b: Gọi N,T lần lượt là BD,BG
Xét ΔDAB có DG/DA=DN/DB
nên GN//AB và GN=1/2AB
=>GN<AB
BM=1/2BC
=>BM<BC
T là trung điểm của BG
=>BT=1/2BG=GT=GE
=>G là trung điểm của TE
Xét tứ giác AEDT có
G là trung điểm chung của AD và ET
=>AEDT là hbh
=>DT=AE=1/2AC
=>Các trung tuyến của ΔBGD đều bằng một nửa các cạnh tương ứng của ΔABC
a,XétΔABM và ΔACM có :
^AMB=^AMC(=90o)
AB=AC(GT)
AM :cạnh chung(gt)
Suy ra:ΔABM= ΔACM (ch-cgv)
=>MB=MC( 2 cạnh tương ứng)
b,Ta có MB=BC2 =242 = 12
Δ AMB vuông tại M có :
AM2+BM2=AB2 ( đl Pytago)
=>AM2=AB2−BM2
= 202−122
= 162
=>AM=16
Các cạnh của \(\Delta BGG'\) với các đường trung tuyến của \(\Delta ABC\) BG cắt AC tại N
CG cắt AB tại E
G là trọng tâm của \(\Delta ABC\)
\(\Rightarrow GA=\frac{2}{3}AM\)
Mà GA = GG’ ( G là trung điểm của AG ‘)
\(GG'=\frac{2}{3}AM\)
Vì G là trọng tâm của \(\Delta ABC\)\(\Rightarrow GB=\frac{2}{3}BN\)
Mặt khác : \(GM=\frac{1}{2}AG\)(G là trọng tâm)
AG = GG’ (gt)
\(GM=\frac{1}{2}GG'\)
M là trung điểm GG’
Do đó: \(\Delta GMC=\Delta G'MB\)vì \(\hept{\begin{cases}GM=GM';MB=MC\\\widehat{GMC}=\widehat{G'MB}\\BG'=CG\end{cases}}\)
Mà \(CG=\frac{2}{3}CE\)(G là trọng tâm \(\Delta ABC\))
\(\Rightarrow BG'=\frac{2}{3}CE\)
Vậy mỗi cạnh của \(\Delta BGG'\) bằng\(\frac{2}{3}\)đường trung tuyến của \(\Delta ABC\)