K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 10 2024

Lời giải:

$\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{a}{b}-\frac{c}{d}<0\Rightarrow \frac{ad-bc}{bd}<0$

$\Rightarrow ad-bc<0$ (do $bd>0$ với $b,d\in\mathbb{N}^*$)

Xét hiệu: 

$\frac{2014a+c}{2014b+d}-\frac{c}{d}=\frac{d(2014a+c)-c(2014b+d)}{d(2014b+d)}$

$=\frac{2014(ad-bc)}{d(2014b+d)}<0$ do $ad-bc<0$ và $d(2014b+d)>0$ với mọi $b,d\in\mathbb{N}^*$

$\Rightarrow \frac{2014a+c}{2014b+d}<\frac{c}{d}$

23 tháng 4 2018

Vì a/b<c/d nên a.d<c.b

=>2018.a.d<2018.c.b

=>2018.a.d+c.d<2018.c.b+c.d

=>2018a+c/2018b+d<c/d

Vậy ta đã chứng minh 2018a+c/2018b+d<c/d.

9 tháng 5 2018

Vì a/b<c/d nên a.d<c.b

=>2018.a.d<2018.c.b

=>2018.a.d+c.d<2018.c.b+c.d

=>2018a+c/2018b+d<c/d

Vậy ta đã chứng minh 2018a+c/2018b+d<c/d.

11 tháng 8 2017

đề kiểu j đây bn?

2 tháng 5 2016

Bạn viết rõ đề bài hơn 1 chút được không, trông thế này hơi khó đoán đúng đề, ko giải được

22 tháng 5 2015

\(\frac{a}{b}<\frac{c}{d}\) \(\Leftrightarrow\) a.d < b.c

Quy đồng mẫu số ta được:

\(\frac{2014a+c}{2014b+d}=\frac{d.\left(2014a+c\right)}{d.\left(2014b+d\right)}=\frac{2014ad+cd}{2014bd+d^2}\)

và \(\frac{c}{d}=\frac{\left(2014b+d\right).c}{\left(2014b+d\right).d}=\frac{2014bc+cd}{2014bd+d^2}\)

Do a.b < c.d suy ra 2014ad + cd < 2014bc + cd .

Vậy \(\frac{2014a+c}{2014b+d}<\frac{c}{d}\) (điều phải chứng minh)

3 tháng 8 2021

Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)

\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)

Vì a là số nguyên dương nên a(a–1) là hai số tự nhiên liên tiếp

⇒a−1⋮2

Tương tự ta có \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2

=> \(a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn

Lại có \(a^2+b^2=c^2+d^2\)\(\Rightarrow a^2+b^2+c^2+d^2=2\left(c^2+d^2\right)\)là số chẵn.

Do đó \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\in\) N*)

 \(a+b+c+d\) là hợp số

Tick nha kkk 😘

3 tháng 8 2021

cậu viết lại công thức trong câu trả lời dduocj không hiu

15 tháng 4 2018

Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

Quy đồng mẫu hai phân số \(\frac{2019a+c}{2019b+d}\) và \(\frac{c}{d}\)

\(\frac{2019a+c}{2019b+d}=\frac{d\left(2019a+c\right)}{d\left(2019b+d\right)}=\frac{2019ad+cd}{2019bd+d^2}\)

\(\frac{c}{d}=\frac{c\left(2019b+d\right)}{d\left(2019b+d\right)}=\frac{2019bc+2019cd}{2019bd+d^2}\)

Vì ad < bc nên 2019ad + cd < 2019bc + 2019cd => \(\frac{2019a+c}{2019b+d}< \frac{c}{d}\)(đpcm)