K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

Câu 1: xy + x - y = 4

<=> (xy + x) - (y+ 1) = 3

<=> x(y+1) - (y + 1) = 3

<=> (y + 1) (x - 1) = 3

Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.

Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:

* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)

* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)

Vậy x = y = 2.

Câu 2:

Ta có:

 (a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0

Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c

5 tháng 3 2018

 \(\frac{a-b}{x}=\frac{b-c}{y}=\frac{c-a}{z}\)

26 tháng 4 2017

bn xem lại điều kiện 

J
26 tháng 4 2017

cái này tôi nháp nhiều lần rồi, với lại đây là đề thi hsg mà, k sai đc đâu

3 tháng 3 2019

\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\)

\(\Leftrightarrow x^{2010}+x^{2012}-2x^{2011}+y^{2010}+y^{2012}-2y^{2011}=0\)

\(\Leftrightarrow x^{2010}\left(x^2-2x+1\right)+y^{2010}\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow x^{2010}\left(x-1\right)^2+y^{2010}\left(y-1\right)^2=0\)

\(x^{2010};y^{2010}>0\Leftrightarrow x=y=1.\Rightarrow x^{2016}+y^{2016}=2\)

\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\)

\(\Leftrightarrow x^{2010}+x^{2012}-2x^{2011}+y^{2010}+y^{2012}-2y^{2011}=0\)

\(\Leftrightarrow x^{2010}\left(x^2-2x+1\right)+y^{2010}\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow x^{2010}\left(x-1\right)^2+y^{2010}\left(y-1\right)^2=0\)

\(x^{2010};y^{2010}>0\Leftrightarrow x=y=1.\Rightarrow x^{2016}+y^{2016}=2\)

...................................................................................................................