K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2021

Đặt x/2=y/3=z/5=k

=>x=2k; y=3k; z=5k

xyz=810

\(\Leftrightarrow30k^3=810\)

=>k=3

=>x=6; y=9; z=15

3 tháng 12 2019

1)

Có:\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\\\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\end{cases}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}}\)

Áp dụng tc của DTSBN có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x-y+z}{8-12+15}=\frac{33}{11}=3\) (vì x-y+z=33)

\(\Rightarrow\hept{\begin{cases}x=3.8=24\\y=3.12=36\\y=3.15=45\end{cases}}\)(tm)

Vậy.....................

2)

Có: \(\text{ x:y:z=2:3:4 }\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}\)

Áp dụng tc của DTSBN có:

\(\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}=\frac{x+3y-2z}{2+9-8}=\frac{3}{3}=1\)(vì x+3y-z=3)

\(\Rightarrow\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)(tm)

Vậy................

15 tháng 11 2015

bài 2 :

ta có x:y:z=3:5:(-2)

=>x/3=y/5=z/-2

=>5x/15=y/5=3z/-6

áp dụng tc dãy ... ta có :

5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4

=>x/3=-=>x=-12

=>y/5=-4=>y=-20

=>z/-2=-4=>z=8

theo đề ta có: x:y:z = 2:3:5

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x + y + z = 40

áp dụng t/c DTSBN ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{40}{10}=4\)

=> \(\hept{\begin{cases}\frac{x}{2}=4=>x=8\\\frac{y}{3}=4=>y=12\\\frac{z}{5}=4=>z=20\end{cases}}\)

vậy x = 8 ; y = 12 ; z = 20

t i c k nhé!! 56546759787668798985425534456456545756756656878776987

20 tháng 8 2016

ta có x:y:z=2:3:5

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Và x+y+z=40

Áp dụng tích chất dãy tỉ số bằng nhau

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{40}{10}=4\)

Do đó

          \(\frac{x}{2}=4\)nên x=4*2=8

            \(\frac{y}{3}=4\)nên y=4*3=12

            \(\frac{z}{5}=4\)nên z=4*5=20

Vậy x=8

      y=12

       z=20

21 tháng 8 2016

Ta có : \(x:y:z=2:3:5\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x+y+z=40\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

  \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{40}{10}=4\)

\(\Leftrightarrow\begin{cases}\frac{x}{2}=4\Rightarrow x=4.2=8\\\frac{y}{3}=4\Rightarrow y=4.3=12\\\frac{z}{5}=4\Rightarrow z=5.4=20\end{cases}\)

21 tháng 8 2016

Ta có

\(x:y:z=2:3:5\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{40}{10}=4\)

\(\Rightarrow\begin{cases}x=8\\y=12\\z=20\end{cases}\)

26 tháng 7 2018

Bài làm

Vì \(x:y:z=3:5:7\)

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

Ta có: \(\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}=\frac{2x-3y+z}{6-15+7}=\frac{0,5}{-2}=-0,25\)

Do đó: \(\hept{\begin{cases}\frac{x}{3}=-0,25\\\frac{y}{5}=-0,25\\\frac{z}{7}=-0,25\end{cases}\Rightarrow\hept{\begin{cases}x=-0,75\\y=-1,25\\z=-1,75\end{cases}}}\)

Vậy \(x=-0,75\)

       \(y=-1,25\)

      \(z=-1,75\)

# Chúc bạn học tốt #

20 tháng 12 2018

Theo tính chất dãy tỉ số bằng nhau :

Ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)và \(2x-3y+z=0,5\)

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{2x}{3.2}=\frac{3y}{5.3}=\frac{2x-3y+z}{6-15+7}=\frac{0,5}{-2}=-0,25\)

\(\frac{x}{3}=-0,25\Rightarrow x=-0,25.3=-0,75\)

\(\frac{y}{5}=-0,25\Rightarrow y=-0,25.5=-1,25\)

\(\frac{z}{7}=-0,25\Rightarrow z=-0,25.7=-1,75\)

21 tháng 9 2018

1, \(x\div y\div z=3\div8\div5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)

\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)

\(\Rightarrow\frac{3x+y-2z}{9+8-10}=\frac{x}{3}=\frac{y}{8}=\frac{z}{10}=\frac{14}{7}=2\)

\(\Rightarrow\hept{\begin{cases}x=2\cdot3=6\\y=2\cdot8=16\\z=2\cdot5=10\end{cases}}\)

vậy_

các phần sau tương tự

21 tháng 9 2018

1, \(x:y:z=3:8:5;3x+y-2z=14\)

\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)

\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\\\frac{y}{8}=2\Rightarrow y=16\\\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\end{cases}}\)

Vậy....

2, \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3};4x-3y-2z=36\)

\(\Rightarrow\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y-2z}{4-6-6}=\frac{36}{-8}=\frac{-36}{8}=\frac{-9}{4}\)

Làm tương tự để tìm x;y;z

3, \(x:y:z=3:5:\left(-2\right);5x-y+3z=124\)

\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{\left(-2\right)}\)

\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)

\(\Rightarrow\hept{\begin{cases}\frac{5x}{15}=31\Rightarrow5x=465\Rightarrow x=93\\\frac{y}{5}=31\Rightarrow y=155\\\frac{3z}{-6}=31\Rightarrow3z=-186\Rightarrow z=-62\end{cases}}\)

Vậy .....

11 tháng 10 2016

Ta có: \(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{x+2y-z}{5+6-4}=\frac{-121}{7}\)

\(\Rightarrow\begin{cases}x=\frac{-121}{7}.5=\frac{-605}{7}\\y=\frac{-121}{7}.3=\frac{-363}{7}\\z=\frac{-121}{7}.4=\frac{-484}{7}\end{cases}\)

Vậy \(x=\frac{-605}{7};y=\frac{-363}{7};z=\frac{-484}{7}\)