Cho a,b,c>0 và a+b+c=3. Chứng minh rằng:
4a2+4b2+4c2+abc ≥ 3
giúp mk với ạ, mk cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có\(a>b-c\)
Mà a;b;c là độ dài 3 cạnh của 1 tam giác nên a;b;c>0
\(\Rightarrow a^2>\left(b-c\right)^2\)
\(\Leftrightarrow a^2>b^2-2bc+c^2\)
\(\Leftrightarrow a^2-b^2-c^2+2bc>0\)
Vậy \(a^2-b^2-c^2+2bc>0\)
Mk sắp phải nộp cho rùi
Bn nào giúp mk vs
Mk tick cho
Các bn ơi giúp ms vs!!!!!
\(\left(a+b+c\right)-\left(a-b+c\right)-\left(a+b-c\right)+\left(a-b-c\right)\)
\(=a+b+c-a+b-c-a-b+c+a-b-c\)
\(=\left(a-a-a+a\right)+\left(b+b-b-b\right)+\left(c-c+c-c\right)=0\)
a) x2-3x+10>0
Có x2-3x+10=x2-2x\(\frac{3}{2}\)+\(\frac{9}{4}\)+\(\frac{31}{4}\)=(x-\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0 với mọi x
=> x2-3x+10>0
b) 3x2+5x+20>0
3x2+5x+20=3(x2+\(\frac{5}{3}\)x+\(\frac{20}{3}\))=3(x2+2.x.\(\frac{5}{6}\)+\(\frac{25}{36}\)+\(\frac{215}{36}\))=3(x+\(\frac{5}{6}\))2+\(\frac{215}{12}\)>0 với mọi x
=>3x2+5x+20 >0
c) -2x2-5x-15<0
-2x2-5x-15=-2(x2+\(\frac{5}{2}\)x+\(\frac{15}{2}\))=-2(x2+2.x.\(\frac{5}{4}\)+\(\frac{25}{20}\)+\(\frac{25}{4}\))=-2(x+\(\frac{5}{4}\))-\(\frac{25}{2}\)<0 với mọi x
-2x2-5x-15<0
a) Ta có: \(x^2-3x+10=x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{31}{4}=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}>0\)
Vậy x2 - 3x + 10 > 0 (đpcm)
b) Tương tự
a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)
Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)
b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)
Giả sử a<b, ta đặt b=a+k(k>0)
Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)
Chứng minh tương tự với a>b
Áp dụng BĐT \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\ge0\)
\(\Leftrightarrow9abc+18\left(a+b+c\right)\ge12\left(ab+bc+ca\right)+27\)
\(\Leftrightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)
Do đó:
\(P=4a^2+4b^2+4c^2+abc\ge4a^2+4b^2+4c^2+\dfrac{4}{3}\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{2}{3}\left(a+b+c\right)^2+\dfrac{10}{3}\left(a^2+b^2+c^2\right)-3\)
\(P\ge\dfrac{2}{3}\left(a+b+c\right)^2+\dfrac{10}{9}\left(a+b+c\right)^2-3=13\)
Đề bài bạn viết thiếu số 1 bên vế phải rồi
Lời giải:
Áp dụng BĐT Schur:
$abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2a)(3-2b)(3-2c)$
$\Leftrightarrow 9abc\geq 12(ab+bc+ac)-27$
$\Leftrightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3$
Do đó:
$4(a^2+b^2+c^2)+abc\geq 4(a^2+b^2+c^2)+\frac{4}{3}(ab+bc+ac)-3$
$=\frac{10}{3}(a^2+b^2+c^2)+\frac{2}{3}(a+b+c)^2-3$
$\geq \frac{10}{9}(a+b+c)^2+\frac{2}{3}(a+b+c)^2-3=13$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$