5x/2x-4*x-2/3x
rút gon biểu thức trình bày ra luôn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12
= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x
= 6x4 - 17 + 6x3 - 5x
= 6x4 + 6x3 - 5x - 17
B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2
= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2
= 4x4 + 6x3 - 5x - 15 - 2x2
= 4x4 + 6x3 - 2x2 - 5x - 15
b) C(x) = A(x) - B(x)
= 6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)
= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15
= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2
= 2x4 - 2 + 2x2
= 2x4 + 2x2 - 2
Tìm x € Z
A. 17 - 3 | 2 - x | = 4
B. 25 - 7 | 2x - 1| = 18
C. |X4 + 1 | = 5x - (2 - x4)
Trình bày luôn ạ
a: A=-2(x^2-5/2x+2)
=-2(x^2-2*x*5/4+25/16+7/16)
=-2(x-5/4)^2-7/8<=-7/8<0 với mọi x
b: B=x^2+5x+25/4+3/4
=(x+5/2)^2+3/4>=3/4>0
=>B luôn dương với mọi x
c: C=x^2-20x+100+1
=(x-10)^2+1>=1>0 với mọi x
=>C luôn dương với mọi x
a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12(cái phần A(x) sửa lại đii )
=> A(x) = (5x4 + x4) + (-5 - 12) + 6x3 - 5x
=> A(x) = 6x4 - 17 + 6x3 - 5x
Sắp xếp : A(x) = 6x4 + 6x3 - 5x - 17
B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2
=> B(x) = (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2
=> B(x) = 6x4 + 6x3 - 5x - 15 - 2x2
Sắp xếp : B(x) = 6x4 + 6x3 - 2x2 - 5x - 15
b) * Tính A(x) + B(x)
A(x) = 6x4 + 6x3 - 5x - 17
B(x) = 6x4 + 6x3 - 2x2 - 5x - 15
A(x) + B(x) = 12x4 + 12x3 - 2x2 - 10x - 32
Đến đây bạn tìm nghiệm thử coi :v
`#3107.\text {DN}`
a)
\((2x-3)^2-x(3-x)+5x-4x^2+17\)
`= 4x^2 - 12x + 9 - 3x + x^2 + 5x - 4x^2 + 17`
`= x^2 - 10x + 26`
b)
`M = x^2 - 10x + 26`
`= [(x)^2 - 2*x*5 + 5^2] + 1`
`= (x - 5)^2 + 1`
Vì `(x - 5)^2 \ge 0` `AA` `x => (x - 5)^2 + 1 \ge 1` `AA` `x`
Vậy, giá trị biểu thức M luôn có giá trị dương với mọi x.
2.
b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)
\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)
Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)
\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)
\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)
Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)
Vậy \(m\in\left(-2;4\right)\)
2.
a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow m>5\)
\(=\dfrac{5x}{2\left(x-2\right)}\cdot\dfrac{x-2}{3x}=\dfrac{5}{6}\)