K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

b: \(=x^2+6x+9-x^2+4=6x+13\)

12 tháng 4 2022

a, Với x khác 1 

\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)

b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)

Vậy với x khác 1 thì bth A luôn nhận gtri âm 

18 tháng 11 2021

\(a,=4x\left(x+2\right)\\ b,=\left(x-3\right)\left(x+3\right)\\ c,=x^2\left(2x-3\right)+\left(2x-3\right)=\left(2x-3\right)\left(x^2+1\right)\)

18 tháng 11 2021

a)4x2+8x                     b)x2-9

=4x(x+2)                      =x2-32

                                     =(x-3)(x+3)

c)2x3-3x2+2x-3

=2x3+2x-(3x2+3)

=2x(x2+1)-3(x2+1)

=(2x-3)(x2+1)

2 tháng 2 2018

Dề sai ko bạn

2 tháng 2 2018

Chỉ cần ý b thôi 

1 tháng 10 2016

Phân tích đa thức thành nhân tử:

a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)

b) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2\)

\(=\left(5-x+2y\right)\left(5+x-2y\right)\)

Rút gọn biểu thức;

\(A=\left(6x+1\right)^2+\left(3x-1\right)^2-2\left(3x-1\right)\left(6x+1\right)\)

\(=\left[\left(6x+1\right)-\left(3x-1\right)\right]^2=\left(6x+1-3x+1\right)=\left(3x+2\right)^2\)

Tìm a để đa thức.. Bạn chia cột dọ thì da

1 tháng 10 2016

\(xy+y^2-x-y=\left(xy+y^2\right)-\left(x+y\right)=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)b)\(25-\left(x^2-4xy+4y^2\right)=5^2-\left(x-2y\right)^2=\left(x-2y+5\right)\left(5-x+2y\right)\)

23 tháng 7 2016

bài 1 : a. x^3 +27 -54-x^3 =-27

b. 8x^3 +y^3 -8x^3 +y^3 =2y^3

c. (2x-1+2x+2)(2x-1-2x-2)=(4x+1).(-3)=-12x-3

d. a^3 +b^3 +3ab(a+b) -3ab(a+b)=a^3+b^3

23 tháng 7 2016

 a. (x-1)^2 =5^2

x-1=5

x=6

 

26 tháng 10 2021

a) \(A=\left(x-1\right).\left(x+1\right)+\left(x+2\right).\left(x^2+2x+4\right)-x.\left(x^2+x+2\right)\)

\(=x^2-1+x^3+2x^2+4x+2x^2+4x+8-x^3-x^2-2x\)

\(=\left(x^3-x^3\right)+\left(x^2+2x^2+2x^2-x^2\right)+\left(4x+4x-2x\right)+\left(-1+8\right)\)

\(=4x^2+6x+7\)

b) Thay vào ta được

\(A=4.\left(\frac{1}{2}\right)^2+6.\frac{1}{2}+7=1+3+7=11\)