Cho hình chữ nhật ABCD có AD=30cm, AB=40cm, H là chân đường vuông góc kẻ từ A đến BD.
Độ dài đoạn BH là .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
DB = HD + HB = 2 + 6 = 8 (cm)
AC = DB (tính chất hình chữ nhật)
OA = OB = OC = OD = 1/2 BD = 4 (cm)
OD = OH + HD
⇒ OH = OD – HD = 4 – 2 = 2 (cm)
Suy ra: OH = HD = 2 cm nên H là trung điểm của OD
Tam giác ADO có AH là đường cao đồng thời là đường trung tuyến nên tam giác ADO cân tại A
⇒AD = AO = 4 (cm)
Trong tam giác vuông ABD có ∠ (BAD) = 90 0
B D 2 = A B 2 + A D 2 (định lý Pi-ta-go) ⇒ A B 2 = B D 2 - A D 2
AB = B D 2 - A D 2 = 8 2 - 4 2 ≈ 7 (cm).
BD = HD + HB
= 2 + 6
= 8 ( cm )
ABCD là hình chữ nhật
=> OA = OB = OC = OD = \(\frac{BD}{2}=\frac{AC}{2}=\frac{8}{2}=4\) \(\left(cm\right)\)
=> OH = OD – HD
= 4 - 2 = 2 ( cm )
\(\Delta AOD\)cân => AO = AD = 4 ( cm )
AD định lý py ta go cho tam giác ABD
BD2 = AB2 + AD2
=> AB2 = 82 - 42 = 64 - 16 = 48
=> \(AB\approx7\left(cm\right)\)
Kẻ đường chéo AC cắt BD tại O
Ta có: BD = DH + HB = 2 + 6 = 8 (cm)
\(AC=BD\Rightarrow OA=OB=OC=OD=\frac{BD}{2}=\frac{8}{2}=4\left(cm\right)\)
\(\Rightarrow OH=OD-HD=4-2=2\left(cm\right)\Rightarrow OH=HD\left(=2cm\right)\)
=> AH là đường trung tuyến của t/g OAD
Mà AH là đường cao của t/g OAD
=> t/g OAD cân tại A => OA = AD = 4 (cm)
Xét t/g ABD vuông tại A có: \(AB^2+AD^2=BD^2\) (định lí pytago)
\(\Rightarrow AB=\sqrt{BD^2-AD^2}=\sqrt{8^2-4^2}=\sqrt{48}\approx7\left(cm\right)\)
Vì △ AHB đồng dạng △ BCD nên:
Suy ra:
Áp dụng định lí Pi-ta-go vào tam giác vuông BCD,ta có:
B D 2 = B C 2 + C D 2 = B C 2 + A B 2
= 12 2 + 9 2 = 225
Suy ra: BD = 15cm
Vậy AH = (12.9)/15 = 7,2 cm
a: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{30}=\dfrac{CD}{40}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC=50cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{50}{7}\)
=>\(BD=3\cdot\dfrac{50}{7}=\dfrac{150}{7}\left(cm\right);CD=4\cdot\dfrac{50}{7}=\dfrac{200}{7}\left(cm\right)\)
b: Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
=>AMDN là hình chữ nhật
Hình chữ nhật AMDN có AD là phân giác của góc MAN
nên AMDN là hình vuông
a: Xét ΔAHB vuông tại H và ΔDAB vuông tại A có
góc ABH chung
=>ΔAHB đồng dạng vơi ΔDAB
b: \(BD=\sqrt{12^2+16^2}=20\left(cm\right)\)
BH=12^2/20=7,2cm
AH=12*16/20=9,6cm