rút gọn \(C=\frac{1}{3}.\frac{1}{7}+\frac{1}{7}.\frac{1}{11}+\frac{1}{11}.\frac{1}{15}+...+\frac{1}{2011}.\frac{1}{2015}\)ta được C=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VP=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\)
\(=1-1+\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4023}{2011}-1\right)+\left(\frac{40024}{2012}-1\right)+2012\)
\(=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}+\frac{2012}{1}\)
\(=2012.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)
\(\Rightarrow2012=503.x\Rightarrow x=\frac{2012}{503}=4\)
\(B=\frac{1}{3}-\frac{3}{4}+0,6+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow B=\frac{3}{15}-\frac{48}{64}+\frac{9}{15}+\frac{1}{64}-\frac{8}{36}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow B=\frac{3}{15}+\frac{9}{15}+\frac{1}{15}+\left(-\frac{48}{64}+\frac{1}{64}\right)+\left(-\frac{8}{36}-\frac{1}{36}\right)\)
\(\Rightarrow B=\frac{13}{15}-\frac{47}{64}-\frac{1}{4}\)
\(\Rightarrow B=-\frac{113}{960}\)
\(C=0\)
\(D=\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow D=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+...-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)
\(\Rightarrow D=1\)
D= \(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}......-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{97.98}+\frac{1}{98.99}\right)\)
=\(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{98}-\frac{1}{99}\right)\)
=\(\frac{1}{99}-\left[1-(\frac{1}{2}-\frac{1}{2}+......+\frac{1}{98}-\frac{1}{99})\right]\)
=\(\frac{1}{99}-\left(1-0-0-.....-0-\frac{1}{99}\right)\)
=\(\frac{1}{99}-1-\frac{1}{99}\)
=1
\(B=\frac{0,6-\frac{3}{11}+\frac{3}{13}}{1,4-\frac{7}{11}+\frac{7}{13}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\)
\(B=\frac{\frac{3}{5}-\frac{3}{11}+\frac{3}{13}}{\frac{7}{5}-\frac{7}{11}+\frac{7}{13}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\)
\(B=\frac{3\left(\frac{1}{5}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{5}-\frac{1}{11}+\frac{1}{13}\right)}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{7\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{10}\right)}\)
\(B=\frac{3}{5}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{7.\frac{1}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\)
\(B=\frac{3}{5}-\frac{2}{7}=\frac{11}{35}\)
Phần 1)Đầu tiên bạn nhân B với 1 phần 4 rồi tính đến đoạn gần cuối sẽ ra 1/3 - 1/35 rồi quy đòng rồi tính sẽ ra kêt quả cuối là 32/105 nha
Mình lười lắm nên chỉ help 1 phần thui nha sr
rút gọn chứ ko fai tính à
\(C=\frac{1}{3}.\frac{1}{7}+\frac{1}{7}.\frac{1}{11}+\frac{1}{11}.\frac{1}{13}+...+\frac{1}{2011}.\frac{1}{2015}\)
\(C=\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.13}+...+\frac{1}{2011.2015}\)
\(4C=4\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.13}+...+\frac{1}{2011.2015}\right)\)
\(4C=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.13}+...+\frac{4}{2011.2015}\)
\(4C=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+...+\frac{1}{2011}-\frac{1}{2015}\)
\(4C=\frac{1}{3}-\frac{1}{2015}=\frac{2012}{6045}\)
\(C=\frac{2012}{6045}:4=\frac{503}{6045}\)