Cho tam giác ABC có các phân giác BE, CF cắt nhau tại O. CMR: điều kiện cần và đủ để số đo góc A=90độ là: \(BO.CO=\dfrac{BE.CF}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/m hai tam giác đồng dạng ,
rồi suy ra tỉ số đồng dạng và nhân chép nhé
Chúng ta lại gặp nhau nữa rồi :v
Đặt BC = a , CA = b , AB = c
Do BE là phân giác của góc B, nên \(\frac{AE}{EC}=\frac{AB}{BC}=\frac{c}{a}\) hay \(\frac{AE}{AE+EC}=\frac{c}{a+c}\)
hay \(\frac{AE}{AC}=\frac{c}{a+c}\Rightarrow AE=\frac{bc}{a+c}\)( 1 )
Do AO là phân giác của góc A trong tam giác AEB, nên: \(\frac{OB}{OE}=\frac{AB}{AE}\)
Kết hợp với (1) ta lại có: \(\frac{BO}{OE}=c:\frac{bc}{a+c}\)
\(\Rightarrow\)\(\frac{OB}{OE}=\frac{a+c}{b}\Rightarrow\frac{BO}{OE+OB}=\frac{a+c}{a+b+c}\)hay \(\frac{OB}{BE}=\frac{a+c}{a+b+c}\)
Tương tự: \(\frac{CO}{CF}=\frac{a+b}{a+b+c}\)
Nên \(BO.OC=BE.\frac{CF}{2}\)
\(\Leftrightarrow\)\(\left(BO:BE\right).\left(CO:CF\right)=\frac{1}{2}\)
\(\Leftrightarrow\)\(\frac{a+c}{a+b+c}.\frac{a+b}{a+b+c}=\left(a+b+c\right)^2\)
\(\Leftrightarrow\)\(2\left(a+c\right)\left(a+b\right)=\frac{1}{2}\)
\(\Leftrightarrow\)\(2a^2+2ab+2ac+2bc=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Leftrightarrow\)\(a^2=b^2+c^2\)
\(\Rightarrow\)Tam giác ABC vuông ở A ( ĐPCM )
Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
Tham khảo bài 3 tại link trên nhé!