Phân tích đa thức sau thành nhân tử 4a^2b^2 -(a^2+b^2- c^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
\(M=\left(a^2+b^2-c^2\right)^2-\left(2ab\right)^2\)
\(M=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)
\(M=\left(\left(a^2-2ab+b^2\right)-c^2\right)\left(\left(a^2+2ab+b^2\right)-c^2\right)\)
\(M=\left(\left(a-b\right)^2-c^2\right)\left(\left(a+b\right)^2-c^2\right)\)
\(M=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)
Phân tích đa thức sau thành nhân tử:
M=(a^2+b^2-c^2)^2 - 4a^2b^2
Giúp mình với nha! Mình đang cần gấp
\(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2\right)^2-\left(2ab\right)^2\)
\(=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)
\(=\left(\left(a^2-2ab+b^2\right)-c^2\right)\left(\left(a^2+2ab+b^2\right)-c^2\right)\)
\(=\left(\left(a-b\right)^2-c^2\right)\left(\left(a+b\right)^2-c^2\right)\)
\(=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)
\(4a^2b^2-\left(a^2+b^2-1\right)^2\)
\(=\left[2ab-\left(a^2+b^2-1\right)\right].\left[2ab+\left(a^2+b^2-1\right)\right]\)
\(=\left(2ab-a^2-b^2+1\right)\left(2ab+a^2+b^2+-1\right)\)
\(=\left[1-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-1\right]\)
\(=\left(1-a+b\right)\left(1+a-b\right)\left(a+b+1\right)\left(a+b-1\right)\)
4a2b2 + 36a2b3 + 6ab4
= 2ab2(2a + 18ab + 3b2)
4a2b3 - 6a3b2
= 2a2b2(2b - 3a)
4a2b2-(a2+b2-c2)2
= (4ab-a2-b2+c2)(4ab+a2+b2-c2)
= -[(a-b)2-c2][(a+b)2-c2]
=-(a-b+c)(a-b-c)(a+b-c)(a+b+c)
=(b-a-c)(b+c-a)(a+b-c)(a+b+c)
\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
e) Ta có: \(a^3-a^2-a+1\)
\(=a^2\left(a-1\right)-\left(a-1\right)\)
\(=\left(a-1\right)\left(a^2-1\right)\)
\(=\left(a-1\right)^2\cdot\left(a+1\right)\)
f) Ta có: \(x^3-2xy-x^2y+2y^2\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-2y\right)\)
a) \(\left(a^2+b^2\right)^2-4a^2b^2=\left(a^2+b^2+2ab\right)\left(a^2+b^2-2ab\right)=\left(a+b\right)^2.\left(a-b\right)^2\)
b) \(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
c) \(-x^3+3x^2-3x+1=\left(1-x\right)^3\)
d) Đề sai ko ???
e) \(a^3-a^2-a+1=a^2\left(a-1\right)-\left(a-1\right)=\left(a-1\right)\left(a^2-1\right)=\left(a-1\right)^2\left(a+1\right)\)
f) \(x^3-2xy-x^2y+2y^2=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)
\(a.25^2-4a^2+12ab-9b^2\\ =25^2-\left(4a^2+12ab-9b^2\right)\\ =25^2-\left(2a-3b\right)^2\\ =\left(25-2a+3b\right)\left(25+2a-3b\right)\\ b.x^3+x^2y-xy^2-y^3\\ =x^2\left(x+y\right)-y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-y^2\right)\\ =\left(x+y\right)\left(x+y\right)\left(x-y\right)\\ =\left(x+y\right)^2\left(x-y\right)\)
a: Ta có: \(25x^2-4a^2+12ab-9b^2\)
\(=25x^2-\left(2a-3b\right)^2\)
\(=\left(5x-2a+3b\right)\left(5x+2a-3b\right)\)
b: Ta có: \(x^3+x^2y-xy^2-y^3\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)^2\)
Đa thức không phân tích được thành nhân tử bạn nhé.