Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 4a^2b^3 - 6a^3b^2 = 2a^2b^2(2b - 3a)
b, 5(a + b) +x( a + b ) = ( 5 + x )( a + b )
c, (a - b)^2 - ( b - a ) = ( a - b )^2 + ( a - b ) = (a - b) ( a - b + 1)
a: =(5a-a+b)(5a+a-b)
=(4a+b)(5a-b)
b: =(2a-a-b)(2a+a+b)
=(a-b)(3a+b)
c: =(7a-2a+b)(7a+2a-b)
=(5a+b)(9a-b)
d: =(6a-3a+2b)(6a+3a-2b)
=(3a+2b)(9a-2b)
e: =(9a-5a+3b)(9a+5a-3b)
=(4a+3b)(14a-3b)
Lời giải:
$25a^2-(a-b)^2=(5a)^2-(a-b)^2=[5a-(a-b)][5a+(a-b)]=(4a+b)(6a-b)$
$4a^2-(a+b)^2=(2a)^2-(a+b)^2=[2a-(a+b)][2a+(a+b)]=(a-b)(3a+b)$
$49a^2-(2a-b)^2=(7a)^2-(2a-b)^2=[7a-(2a-b)][7a+(2a-b)]=(5a+b)(9a-b)$
$36a^2-(3a-2b)^2=(6a)^2-(3a-2b)^2=[6a-(3a-2b)][6a+(3a-2b)]$
$=(3a+2b)(9a-2b)$
$81a^2-(5a-3b)^2=(9a)^2-(5a-3b)^2=[9a-(5a-3b)][9a+(5a-3b)]$
$=(4a+3b)(14a-3b)$
1) a^2 + b^2 + 2a - 2b - 2ab = (a^2 - 2ab + b^2) + (2a-2b) = (a-b)^2 + 2(a-b) = (a-b)(a-b+2)
2) 4a^2 - 4b^2 - 4a + 1 = ( 4a^2 - 4a +1) - 4b^2 = (2a-1)^2 - 4b^2 = (2a-1-2b)(2a-1+2b)
3) a^3+6a^2+12a+8= (a^3+8)+(6a^2+12a)= (a+2)(a^2-2a+4)+6a(a+2)=(a+2)(a^2-2a+4+6a)=(a+2)(a^2+4a+4)=(a+2)(a+2)^2=(a+2)^3
\(a.25^2-4a^2+12ab-9b^2\\ =25^2-\left(4a^2+12ab-9b^2\right)\\ =25^2-\left(2a-3b\right)^2\\ =\left(25-2a+3b\right)\left(25+2a-3b\right)\\ b.x^3+x^2y-xy^2-y^3\\ =x^2\left(x+y\right)-y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-y^2\right)\\ =\left(x+y\right)\left(x+y\right)\left(x-y\right)\\ =\left(x+y\right)^2\left(x-y\right)\)
a: Ta có: \(25x^2-4a^2+12ab-9b^2\)
\(=25x^2-\left(2a-3b\right)^2\)
\(=\left(5x-2a+3b\right)\left(5x+2a-3b\right)\)
b: Ta có: \(x^3+x^2y-xy^2-y^3\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)^2\)
\(a^2+b^2+2a-2b-2ab=a^2-2ab+b^2+2\left(a-b\right)\)
\(=\left(a-b\right)^2+2\left(a-b\right)\)
\(=\left(a-b\right)\left(a-b+2\right)\)
\(4a^2-4b^2-4a+1=4a^2-4a+1-\left(2b\right)^2\)
\(=\left(2a-1\right)^2-\left(2b\right)^2\)
\(=\left(2a-1-2b\right)\left(2a-1+2b\right)\)
\(3,\)Nhẩm nghiệm của đa thức trên ta đc : -1
Ta có lược đồ sau :
1 | 1 | -4 | -4 | |
-1 | 1 | 0 | -4 | 0 |
Phân tích thành nhân tử ta có :\(\left(x+1\right)\left(x^2-4\right)\)
a2-b2-4a+4b
=(a-b)(a+b)-4(a-b)
=(a-b)(a+b-4)
b,
x3-3x2-3x+1
=(x+1)(x2-x+1)-3x(x+1)
=(x+1)(x2-4x+1)
c,sai đề
mình trả lời câu a,b đã mình đang bận
a, a^2-b^2-4a+4b
=(a-b)(a+b)-4(a-b)
=(a-b)(a+b-4)
b, x^3-3x^2-3x+1
=x^3 +x^2-4x^2-4x+x+1
=x(x+1)-4x(x+1)+(x+1)
=(x+1)(x-4x+1)
4a2b2 + 36a2b3 + 6ab4
= 2ab2(2a + 18ab + 3b2)
4a2b3 - 6a3b2
= 2a2b2(2b - 3a)
con dc thầy tick
thêm GP
=))