K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2016

1-\(\frac{z}{x}\)=\(\frac{x}{x}-\frac{z}{x}\)=\(\frac{x-z}{x}\)=\(\frac{y}{x}\)

1-\(\frac{x}{z}=\frac{z}{z}-\frac{x}{z}=\frac{z-x}{z}=\frac{y}{z}\)

1+\(\frac{y}{z}=\frac{z}{z}+\frac{y}{z}=\frac{z+y}{z}=\frac{-x}{z}\)

ròi nhân các kết quả lại

20 tháng 3 2016

\(=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

\(=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}-1\)

vừa nãy mik nhầm

8 tháng 3 2016

Bằng -1

Trên luyện toán VIOLYMPIC cũng có

8 tháng 3 2016

Mấy câu này mấy bạn nên thay:

Thay x = 3 , y = 2 , z = 1. (3-2-1=0)

Đoạn sau bấm máy tính: B = (1 - 1/3)(1 - 3/2)(1 - 2/1)

                                        = 1/3

15 tháng 9 2015

\(\text{Ta có: }x-y-z=0\Rightarrow x=y+z\)

                                                  \(y=x-z\) 

                                                  \(z=x-y\)

\(\text{Mặt khác: }A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

                           \(=\left(\frac{x}{x}-\frac{z}{x}\right)\left(\frac{y}{y}-\frac{x}{y}\right)\left(\frac{z}{z}+\frac{y}{z}\right)\)

                           \(=\frac{x-z}{x}.\frac{y-x}{y}.\frac{y+z}{z}\)

                           \(=\frac{x-z}{y+z}.\frac{y-x}{x-z}.\frac{y+z}{x-y}\)

                           \(=\frac{x-z}{y+z}.\frac{y-x}{x-z}.\frac{y+z}{-\left(y-x\right)}\)

                           \(=-1\)

1 tháng 3 2020

áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)

y+z-x/x=z+x-y/y=x+y-z/z

=y+z-x+z+x-y+x+y-z/x+y+z

=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z

=0+0+0+x+y+z/x+y+z=1

\(\Leftrightarrow\)x=y=z (*)

thay (*) vào B ta có:

B=(1+x/x)(1+x/x)(1+x/x)

  =2.2.2=8

21 tháng 8 2020

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )

\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)

Thế x = y = z vào B ta được :

\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)

2 tháng 5 2019

#)Giải :

\(A=\left(1-\frac{z}{y}\right).\left(1-\frac{x}{y}\right).\left(1-\frac{y}{z}\right)\)

\(A=\frac{x-z}{x}.\frac{x+y}{z}.\frac{z-y}{x}\)

\(x+y-z=0\Leftrightarrow\hept{\begin{cases}x+y=z\\x-z=-y\\z-y=x\end{cases}}\)

Thay vào A, ta được :

\(A=\frac{-y}{x}.\frac{z}{y}.\frac{x}{z}=\frac{-yzx}{xyz}=-1\)

       ~Will~be~Pens~

13 tháng 10 2016

Ta có: x - y - z = 0 \(\Rightarrow\begin{cases}x-z=y\\y-x=-z\\z+y=x\end{cases}\)

\(A=\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)\)

\(A=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

\(A=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-1\)