K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-ac-bc+c^2-3ab\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(a;b;c>0\Rightarrow a+b+c>0\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

\(P=0\)

14 tháng 3 2019

\(a^3+b^3+c^3=3abc\Leftrightarrow a+b+c=0\)(bổ đề này khá phổ biến ,bạn có thế search gg mk hỏi lười )

sau đó thay vào xem được ko bạn ^_^

29 tháng 10 2019

Đề sai sai gì đó nhá xem lại dùm

NV
1 tháng 3 2021

\(VT\ge\dfrac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\dfrac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\dfrac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)

Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{2019}\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{x^2+z^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\) \(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\)

\(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2}{x}+\dfrac{z^2+x^2}{y}+\dfrac{x^2+y^2}{z}-\left(x+y+z\right)\)

\(2\sqrt{2}VT\ge\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\)

\(2\sqrt{2}VT\ge\dfrac{4\left(x+y+z\right)^2}{2x+2y+2z}-\left(x+y+z\right)=x+y+z=\sqrt{2019}\)

\(\Rightarrow VT\ge\dfrac{\sqrt{2019}}{2\sqrt{2}}=\sqrt{\dfrac{2019}{8}}\) (đpcm)

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=2018k\\b=2019k\\c=2020k\end{matrix}\right.\)

\(\Rightarrow\left(a-c\right)^3=\left(2018k-2020k\right)^3=\left(-2k\right)^3=-8k^3\) (1)

\(8\left(a-b\right)^2.\left(b-c\right)=8\left(2018k-2019k\right)^2.\left(2019k-2020k\right)=8k^2\left(-k\right)=8\left(-k\right)^3=-8k^3\left(2\right)\)

Từ (1) và (2) ⇒ \(\left(a-c\right)^3=8\left(a-b\right)^2.\left(b-c\right)\left(đpcm\right)\)

30 tháng 1 2020

mn giúp mk vs

chiều mk nộp rùikhocroikhocroikhocroikhocroi

15 tháng 6 2019

Đặt a/2018 = b/2019 = c/2020 

=> a = 2018k ; b = 2019k ; c = 2020k

Khi đó, ta có :

(2018k - 2020k)2 = 4k2 (1)

4.(2018k - 2019k)(2019k - 2020k) = 4.(-k).(-k) = 4k2 (2)

Từ (1) và (2) => đpcm

16 tháng 6 2019

Mình làm cách lớp 7 kiểu khác nhé:

Áp dụng tính chất của dãy tỉ số bằng nhau : 

\(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=\frac{a-c}{2018-2020}=\frac{a-b}{2018-2019}=\frac{b-c}{2019-2020}\)

\(\Rightarrow\frac{a-c}{-2}=\frac{a-b}{-1}=\frac{b-c}{-1}\Leftrightarrow a-c=2\left(a-b\right)=2\left(b-c\right)\&a-b=b-c\)

\(\Leftrightarrow\left(a-c\right)^2=2\left(a-b\right).2\left(b-c\right)=4\left(a-b\right)\left(b-c\right)\left(đpcm\right).\)

5 tháng 2 2020

Ta có: \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=\frac{a-b}{2018-2019}=\frac{b-c}{2019-2020}=\frac{a-c}{2018-2020}.\)

18 tháng 10 2021

Ta có :

Đặt \(\frac{a}{2019}\)\(\frac{b}{2020}\)\(\frac{c}{2021}\)= k

=> a = 2019k; b = 2020k; c = 2021k

M = 4(a-b).(b-c) - (c-a)

M = 4(2019k- 2020k). (2020k-2021k) - (2021k - 2019k)

M = 4.(-1)k.(-1)k - 2k

M = 4k2 - 2k

(Hình như mình thấy đề bạn có gì sai sai)

18 tháng 10 2021
Bài này dễ tý nx mk giải đc ko, mk đà hc