K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

((X+1)^2)^2 bé hơn hoặc bằng 0

Suy ra x+1=0,Nên x=-1

14 tháng 2 2017

\(\frac{x}{1-x}+\frac{5}{x}-5+5=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\)

Áp dụng Cauchy: \(A\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}+5=2\sqrt{5}+5\)

Dấu = xảy ra <=> \(\frac{x}{1-x}=\frac{5\left(1-x\right)}{x}< =>x=....\)tự giải quyết nốt nhé

21 tháng 7 2018

# Bài 1

* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương

* Với \(x,y>0\) áp dụng (1) ta có

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)

\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)

* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)

Áp dụng (2) với x , y > 0 ta có

\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)

* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)

\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)

Dấu "=" xra khi \(x=y=4\)

Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)

15 tháng 10 2015

\(A=\frac{x}{1-x}+\frac{5}{x}=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}+5=2\sqrt{5}+5\)(BĐT Cô-si) 

Xảy ra đẳng thức khi và chỉ khi \(5\left(1-x\right)^2=x^2\Leftrightarrow5x^2-10x+5=x^2\Leftrightarrow4x^2-10x+5=0\Leftrightarrow x=\frac{5+\sqrt{5}}{4}\)(loại) hoặc \(x=\frac{5-\sqrt{5}}{4}\)(thỏa mãn) .

Vậy min \(A=2\sqrt{5}+5\)  khi và chỉ khi \(x=\frac{5-\sqrt{5}}{4}\)