b\^2(x-1)+9(1-x)'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn:
A=(x+3+2.(x^-9)^1/2):(2x-6+(x^2-9)^1/2
B=(x^2+5x+6+x.(9-x^2)^1/2):(3x-x^2+(x+2).(9-x^2)^1/2
Rút gọn:
A=(x+3+2.(x^-9)^1/2)/(2x-6+(x^2-9)^1/2
B=(x^2+5x+6+x.(9-x^2)^1/2)/(3x-x^2+(x+2).(9-x^2)^1/2
ta có : \(A=\dfrac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}=\dfrac{\sqrt{x+3}\left(\sqrt{x+3}+2\sqrt{x-3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}=\dfrac{\sqrt{x+3}}{\sqrt{x-3}}\)
ta có : \(B=\dfrac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}=\dfrac{\left(x+2\right)\left(x+3\right)+x\sqrt{ 9-x^2}}{x\left(3-x\right)+\left(x+2\right)\sqrt{9-x^2}}\)
\(=\dfrac{\sqrt{x+3}\left(\left(x+2\right)\sqrt{x+3}+x\sqrt{3-x}\right)}{\sqrt{3-x}\left(x\sqrt{3-x}+\left(x+2\right)\sqrt{x+3}\right)}=\dfrac{\sqrt{x+3}}{\sqrt{3-x}}\)
1.1 Hình vuông có tối đa 4 góc vậy 4 hình vuông có tối đa 20 góc. S
2.1 hình vuông có tối đa 4 góc vậy 4 hình vuông có tối đa 16 góc. Đ
3. 1 hình vuông có tối thiểu 4 góc vậy 4 hình vuông có tối thiểu 16 góc. Đ
4.1 hình vuông có tối thiểu 1 góc vậy 4 hình vuông có tối thiểu 16 góc. S
Nhiêu đó hết tài năng rồi, mình mới lớp 3 thôi.
a: \(\dfrac{x-1}{x^2-x+1}-\dfrac{x+1}{x^2+x+1}=\dfrac{10}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)=10\)
\(\Leftrightarrow x\left(x^3-1\right)-x\left(x^3+1\right)=10\)
=>-2x=10
hay x=-5
d: \(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+7\right)\left(x+8\right)}=\dfrac{1}{14}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+8}=\dfrac{1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(x+8\right)=14\left(x+8\right)-14\left(x+1\right)\)
\(\Leftrightarrow x^2+9x+8=14x+112-14x-14=98\)
\(\Leftrightarrow x^2+9x-90=0\)
\(\Leftrightarrow x\in\left\{6;-15\right\}\)