cho tam giác ABC vẽ BD vuông góc AC Vẽ CE vuông góc AB BD và CE cắt nhau ở H Biết AB=CH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại D
=>^A+^ABD=90°(1)
Xét ΔACE vuông góc tại E
=>^A+^ACE=90°(2)
Từ (1) và (2)
=>^ABD=^ACE(đpcm)
b) Xét ΔABC có:
^BAC+^ABC+^ACB=180°(đl tổng ba góc tam giác)
=>^BAC=180°-65°-45°=70°
Xét ΔCAE vuông tại E
=>^CAE+^ACE=90°
=>^ACE=90°-70°=20°
Xét ΔCHD vuông tại D
=>^CHD+^DCH=90°
=>^CHD=70°
=>^CHD+^BHC=180°
=>^BHC=110°
Xét tứ giác AEID có
\(\widehat{AEI}+\widehat{ADI}+\widehat{EAD}+\widehat{EID}=360^0\)
=>\(\widehat{EAD}+\widehat{EID}+90^0+90^0=360^0\)
=>\(\widehat{EAD}+\widehat{EID}=360^0-180^0=180^0\)
mà \(\widehat{EID}=\widehat{BIC}\)(hai góc đối đỉnh)
nên \(\widehat{EAD}+\widehat{BIC}=180^0\)
=>góc BIC bù với góc BAC
a: Xét ΔBDC vuông tại D và ΔCEB vuông tại E có
BC chung
\(\widehat{DCB}=\widehat{EBC}\)
Do đó: ΔBDC=ΔCEB
b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
BD=CE
Do đó:ΔADB=ΔAEC
Suy ra: \(\widehat{IBE}=\widehat{ICD}\)
c: Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại I
Do đó: I là trực tâm của ΔABC
=>AI\(\perp\)BC tại H
2 v là gì vậy hả bn Duong Thi Nhuong TH Hoa Trach - Phong GD va DT Bo Trach
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.