K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2022

Bài 1:

undefined

Bài 2:

undefined

a: Xét ΔABD và ΔACD có 
AB=AC

AD chung

BD=CD
Do đó: ΔABD=ΔACD

b: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là tia phân giác của góc BAC

c: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường cao

=>AD⊥BC

mà d//BC

nên AD⊥d

19 tháng 2 2022

a) Xét ΔΔABD và ΔΔACD có:

        AB = AC (gt)

        AD: cạnh chung

        BD = CD (D là trung điểm của BC)

⇒Δ⇒ΔABD = ΔΔACD (c.c.c)

b)b) Ta có: ΔΔABD = ΔΔACD (theo ý a)

\(\widehat{BAD}\)=\(\widehat{CAD}\)  (2gocs tương ứng )

 AD là tia phân giác của \(\widehat{BAC}\)

c) Ta có: ΔΔABD = ΔΔACD (theo ý a)

⇒ \(\widehat{ADB}\)=\(\widehat{ADC}\)(2 góc tương ứng )

mà \(\widehat{ADB}\)  +  \(\widehat{ADC}\)=18001800( 2 góc kề bù ) 

\(\widehat{ADB}\)=\(\widehat{ADC}\)= 900900

⇒ AD ⊥ BC

Lại có: d // BC (gt)   AD  d

13 tháng 1 2023

 

`a)` Vì `D` là trung điểm `BC=>DB=DC`

Xét `\triangle ABD` và `\triangle ACD` có:

   `{:(AB=AC),(AD\text{ là cạnh chung}),(BD=CD):}}=>\triangle ABD=\triangle ACD` (c-c-c)

`b)`  Vì `D` là tđ của `BC=>AD` là đường trung tuyến trong `\triangle ABC` cân tại `A`

   `=>AD` đồng thời là đường phân giác của `\triangle ABC`

  `=>AD` là tia phân giác của `\hat{BAC}`

`c)` Vì `D` là tđ của `BC=>AD` là đường trung tuyến trong `\triangle ABC` cân tại `A`

  `=>AD` đồng thời là đường cao của `\triangle ABC`

  `=>AD \bot BC`

`a,` Xét Tam giác `ABD` và Tam giác `ACD` có (bạn lưu ý ghi đúng tên của Tam giác để có các cạnh và góc tương ứng nhé)

`AB = AC (g``t)`

AD chung

`DB = DC (g``t)`

`=>` Tam giác `ABD =` Tam giác `ACD (c-c-c)`

`b,` Vì Tam giác `ABD =` Tam giác `ACD (a)`

`=>` \(\widehat{BAD}=\widehat{CAD}\) (2 góc tương ứng)

`=> AD` là tia phân giác của \(\widehat{BAC}\) 

`c,` Vì Tam giác `ABD =` Tam giác `ACD (a)`

`=>` \(\widehat{ADB}=\widehat{ADC}\) (2 góc tương ứng)

Mà 2 góc này ở vị trí kề bù

`=>`\(\widehat{ADB}+\widehat{ADC}=180^0\)

`=>` \(\widehat{ADB}=\widehat{ADC}=\) \(\dfrac{180}{2}=90^0\)

`=>`\(AD\perp BC\) `(đpcm)`

loading...

 

22 tháng 11 2023

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

Do đó: ΔABD=ΔACD

b: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

=>AD là phân giác của \(\widehat{BAC}\)

c: ΔABD=ΔACD

=>\(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

=>AD\(\perp\)BC

1 tháng 4 2020

a) Xét \(\Delta\)ABD và \(\Delta\)ACD có:

        AB = AC (gt)

        AD: cạnh chung

        BD = CD (D là trung điểm của BC)

\(\Rightarrow\Delta\)ABD = \(\Delta\)ACD (c.c.c)

b) Ta có: \(\Delta\)ABD = \(\Delta\)ACD (theo ý a)

\(\Rightarrow\widehat{BAD}\) = \(\widehat{CAD}\) (2 góc tương ứng)

\(\Rightarrow\) AD là tia phân giác của \(\widehat{BAC}\)

c) Ta có: \(\Delta\)ABD = \(\Delta\)ACD (theo ý a)

\(\Rightarrow\widehat{ADB}\) =\(\widehat{ADC}\) (2 góc tương ứng)

\(\widehat{ADB}\) + \(\widehat{ADC}\) = 18001800 (2 góc kề bù)

\(\Rightarrow\widehat{ADB}\) = \(\widehat{ADC}\) = 900900

\(\Rightarrow\) AD \(\perp\) BC

Lại có: d // BC (gt)  \(\Rightarrow\) AD \(\perp\) d

ĐS:......................

#Châu's ngốc

10 tháng 1 2022

10 tháng 1 2022

TK