K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

Ví 1 số :2 dư 0 hoặc 1 mà (a+b) ko chia hết cho 2 => (a+b) :2 dư 1=>1 trong 2 số phải chia hết cho2

5 tháng 11 2016

Vì a chia hết cho b => a =kb (k thuộc N* )

   b chia hết cho a => b=ka (k thuộc N* )

=> \(a\ge b\)và \(b\ge a\)

=>a = b (ĐPCM)

7 tháng 3 2017

????????????????

7 tháng 3 2017

Câu này vô nghĩa tôi không trả lời

30 tháng 1 2019

các CTV giúp em với

30 tháng 1 2019

a-b chia hết cho 2 =>a và b cùng chẵn hoặc lẻ

mà 2 số cùng chẵn hoặc lẻ có hiệu là số chẵn=>chia hết cho 2 

vậy b-a chia hết cho 2

c-b chia hết cho 2 =>c và b cùng chẵn hoặc lẻ

mà a và b cùng chẵn hoặc lẻ =>c và a cùng chẵn hoặc lẻ

mà 2 số cùng chẵn hoặc lẻ có hiệu là số chẵn=>chia hết cho 2

=>a-c chia hết cho 2

15 tháng 1 2018

Bài 1:

Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y 

Vì 6x+11y chia hết cho 31, 31y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Mà (6;31)=1 => x+7y chia hết cho 31

Bài 3:

a,n2+3n-13 chia hết cho n+3

=>n(n+3)-13 chia hết cho n+3

=>13 chia hết cho n+3

=>n+3 E Ư(13)={1;-1;13;-13}

=>n E {-2;-4;10;-16}

d,n2+3 chia hết cho n-1

=>n2-n+n-1+4 chia hết cho n-1

=>n(n-1)+(n-1)+4 chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 E Ư(4)={1;-1;2;-2;4;-4}

=>n E {2;0;3;-1;5;-3}

AH
Akai Haruma
Giáo viên
16 tháng 7 2023

Lời giải:
Đặt $a+1=6k, b+2007=6m$ với $k,m\in\mathbb{Z}$

$4^n+a+b=4^n+6k-1+6m-2007=(4^n-2008)+6k+6m$

Hiển nhiên $4^n-2008\vdots 2$ với mọi $n$ là tự nhiên khác 0

$4\equiv 1\pmod 3\Rightarrow 4^n\equiv 1\pmod 3$

$\Rightarrow 4^n-2008\equiv 1-2008\equiv -2007\equiv 0\pmod 3$

Vậy $4^n-2008$ chia hết cho cả 2 và 3 nên chia hết cho 6

$\Rightarrow 4^n+a+b=4^n-2008+6k+6m\vdots 6$ (đpcm)