3x mũ 2 + 7x + 4 = 0
Thì lm như nào nhỉ ???
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: x^2-9x+8=0
=>(x-1)(x-8)=0
=>x=1 hoặc x=8
2: 3x^2-7x+4=0
=>3x^2-3x-4x+4=0
=>(x-1)(3x-4)=0
=>x=4/3 hoặc x=1
3: 2x^2+5x-7=0
=>(2x+7)(x-1)=0
=>x=1 hoặc x=-7/2
4: 3x^2-9x+6=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
5: x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
`@` `\text {Answer}`
`\downarrow`
`1)`
\(x^2 - 9x + 8?\)
\(x^2-9x+8=0\)
`<=>`\(x^2-8x-x+8=0\)
`<=> (x^2 - 8x) - (x - 8) = 0`
`<=> x(x - 8) - (x-8) = 0`
`<=> (x-1)(x-8) = 0`
`<=>`\(\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; 8}`
`2)`
\(3x^2 - 7x + 4 =0\)
`<=> 3x^2 - 3x - 4x + 4 = 0`
`<=> (3x^2 - 3x) - (4x - 4) = 0`
`<=> 3x(x - 1) - 4(x - 1) = 0`
`<=> (3x - 4)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}3x-4=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}3x=4\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {4/3; 1}`
`3)`
\(2x^2 + 5x - 7=0\)
`<=> 2x^2 - 2x + 7x - 7 = 0`
`<=> (2x^2 - 2x) + (7x - 7) = 0`
`<=> 2x(x - 1) + 7(x - 1) = 0`
`<=> (2x+7)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=-7\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {-7/2; 1}.`
a:
Sửa đề: tại x=-1/2
Đặt A=-5x+7x-3x-2x
=x(-5+7-3-2)
=-3x
Thay \(x=-\dfrac{1}{2}\) vào A, ta được:
\(A=-3x\cdot\dfrac{-1}{2}=\dfrac{3}{2}\)
b: Sửa đề: \(-4x^2-3x^2+2x^2-x^2\); tại x=-1/2
Đặt \(B=-4x^2-3x^2+2x^2-x^2\)
\(=x^2\left(-4-3+2-1\right)=-6x^2\)
Thay x=-1/2 vào B, ta được:
\(B=-6\cdot\left(-\dfrac{1}{2}\right)^2=-6\cdot\dfrac{1}{4}=-\dfrac{6}{4}=-\dfrac{3}{2}\)
a: Đặt 3x-5=0
=>3x=5
hay x=5/3
b: Đặt 3-1/2x=0
=>1/2x=3
hay x=6
c: Đặt x2+3x+2=0
=>(x+2)(x+1)=0
=>x=-2 hoặc x=-1
d: Đặt 5x2+7x+2=0
=>(5x+1)(x+1)=0
=>x=-1 hoặc x=-1/5
1. \(A+7x^2y-5xy^2-xy=x^2y+8xy^2-5xy\)
\(\Rightarrow A+7x^2y-x^2y-5xy^2-8xy^2-xy+5xy=0\)
\(\Rightarrow A+6x^2y-13xy^2+4xy=0\)
\(\Rightarrow A=-6x^2y+13xy^2-4xy\)
2. \(4xy^2-7x+1-A=3x^2-7x-1\)
\(\Rightarrow4xy^2-3x^2-7x+7x+1+1-A=0\)
\(\Rightarrow4xy^2-3x^2+2-A=0\)
\(\Rightarrow A=4xy^2-3x^2+2\)
\(3x^2+7x+4=0\)
\(\Leftrightarrow3x^2+3x+4x+4=0\)
\(\Leftrightarrow\left(3x^2+3x\right)+\left(4x+4\right)=0\)
\(\Leftrightarrow3x\left(x+1\right)+4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=\frac{-4}{3}\end{cases}}}\)
Vậy:.....
#H