cho p là số nguyên tố. tìm tất cả các số nguyên a thỏa mãn : a2+a-p=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^2+a-p=0
=> a^2+a = p
=> p = a.(a+1)
Ta thấy a;a+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2
=> p chia hết cho 2
Mà p nguyên tố => p = 2
=> a^2+a = 2
=> a^2+a-2 = 0
=> (a^2-a)+(2a-2) = 0
=> a.(a-1)+2.(a-1) = 0
=> (a-1).(a+2) = 0
=> a-1=0 hoặc a+2=0
=> a=1 hoặc a=-2
Vậy a thuộc {-2;1}
Tk mk nha
\(a^2+a-p=0\)
\(\Rightarrow a\left(a+1\right)=p\)
Vì p là số nguyên tố => p chỉ có 2 ước nguyên là 1; p
Mà \(a\left(a+1\right)=p\) => a và a + 1 là các ước của p
=> a = 1 hoặc a + 1 = 1 => a = 1 hoặc a = 0
Thử lại : với a = 1 => 1(1 + 1) = 2 là số nguyên tố (tm)
với a = 0 => 0(0 + 1) = 0 không là số nguyên tố (loại)
Vậy a = 1
1.
\(p=2\Rightarrow p+6=8\) ko phải SNT (ktm)
\(\Rightarrow p>2\Rightarrow p\) lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p^2+2021\) luôn là 1 số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số
2.
\(a^2+3a=k^2\Rightarrow4a^2+12a=4k^2\)
\(\Rightarrow4a^2+12a+9=4k^2+9\Rightarrow\left(2a+3\right)^2=\left(2k\right)^2+9\)
\(\Rightarrow\left(2a+3-2k\right)\left(2a+3+2k\right)=9\)
\(\Leftrightarrow...\)
a)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
Tổng các số nguyên trên là:
\((8-10).19:2=-19\)
b)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)
Tổng các số trên là:
\((10-9).20:2=10\)
c) Các số nguyên x thỏa mãn là:
\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)
Tổng các số nguyên đó là:
\((16-15).32:2=16\)
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
Đặt: \(5p+1=a^3;a\inℕ^∗\)
=> \(5p=a^3-1\)
<=> \(5p=\left(a-1\right)\left(a^2+a+1\right)\)
<=> \(a-1;a^2+a+1\) đều là ước của 5p \(\in\left\{1;5;p;5p\right\}\)
Do: \(a\inℕ^∗\) => \(a-1< a^2+a+1\) Do: p là SNT => \(1< 5p\)
=> Ta thực tế chỉ phải xét 3 trường hợp:
TH1: \(\hept{\begin{cases}a-1=1\\a^2+a+1=5p\end{cases}}\)
=> \(a=2\)
=> \(5p=2^2+2+1=4+2+1=7\)
=> \(p=\frac{7}{5}\) => Loại do p là SNT.
TH2: \(\hept{\begin{cases}a-1=5\\a^2+a+1=p\end{cases}}\)
=> \(a=6\)
=> \(p=6^2+6+1=43\)
THỬ LẠI: \(5p+1=5.43+1=216=6^3\left(tmđk\right)\)
TH3: \(\hept{\begin{cases}a-1=p\\a^2+a+1=5\end{cases}}\)
=> \(a^2+a=4\)
=> Thử \(a=1;a=2\)đều loại. Và \(a>2\) thì \(a^2+a>4\) (LOẠI)
a = 0 cũng loại do a thuộc N*.
Vậy duy nhất có nghiệm \(p=43\) là thỏa mãn điều kiện.