CMR:
4:3 = 2
ai nhanh mk tick!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =16-2+91=14+91=105
b: =9*5+8*10-27=45+53=98
c: =32+65-3*8=8+65=73
d; \(=5^3-10^2=125-100=25\)
e: \(=4^2-3^2+1=8\)
f: =9*16-16*8-8+16*4
=16(9-8+4)-8
=16*5-8
=72
a) \(2^4-50:25+13\cdot7\)
\(=2^4-2+91\)
\(=16-2+91\)
\(=14+91\)
\(=105\)
b) \(3^2\cdot5+2^3\cdot10-3^4:3\)
\(=9\cdot5+8\cdot10-3^3\)
\(=45+80-27\)
\(=98\)
c) \(2^5+5\cdot13-3\cdot2^3\)
\(=32+65-3\cdot8\)
\(=32+65-24\)
\(=73\)
d) \(5^{13}:5^{10}-5^2\cdot2^2\)
\(=5^{13-10}-\left(5\cdot2\right)^2\)
\(=5^3-10^2\)
\(=125-100\)
\(=25\)
e) \(4^5:4^3-3^9:3^7+5^0\)
\(=4^{5-3}-3^{9-7}+1\)
\(=4^2-3^2+1\)
\(=16-9+1\)
\(=8\)
f) \(3^2\cdot2^4-2^3\cdot4^2-2^3\cdot5^0+4^2\cdot2^2\)
\(=3^2\cdot4^2-2^3\cdot4^2-2^3\cdot1+4^2\cdot2^2\)
\(=4^2\cdot\left(3^2-2^3+2^2\right)-2^3\)
\(=4^2\cdot\left(9-8+4\right)-8\)
\(=16\cdot5-8\)
\(=72\)
Gọi 4 số đó lần lượt là: n; n+1;n+2;n+3(n\(\inℕ\))
Theo đề bài ta có:
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+2\right)\left(n+1\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n+1\right)^2\)
Mà n \(\inℕ\Rightarrow\left(n^2+3n+1\right)^2\inℕ\)
Vậy tích của 4 số n;n+1;n+2;n+3 là một số chính phương(đpcm)
Có vẻ đề sai rồi đó bạn
với n=0,b=1 thì đâu có chia hết cho 7
5x+6⋮x+2
=>5(x+2)-4⋮x+2
Mà x+2⋮x+2 =>5(x+2)⋮x+2
=>4⋮x+2
=>x+2∈Ư(4)={-4;-2;-1;1;2;4}
=>x∈{-6;-4;-3;-1;0;2}
Vì x+2 ⋮ x+2; 5 ∈ N
=> 5(x+2) ⋮ x+2
=> 5x +10 ⋮ x+2
Mà 5x + 6 ⋮ x+2
=> (5x+10)-(5x+6) ⋮ x+2
=> 4 ⋮ x+2
=> x+2 thuộc tập ước của 4
Mà ước của 4 = {1;-1;2;-2;4;-4}
=> x+2 ∈ {1;-1;2;-2;4;-4}
=> x ∈ {-1;-3;0;-4;2;-6}
Vậy x ∈ {-1;-3;0;-4;2;-6}
Ta sẽ CM nó chia hết cho 2 và 3 thì sẽ chia hết cho 6 bởi vì (2;3)=1
Dễ thấy P là sô nguyên tố lớn hơn 3 nên P sẽ có dạng 2k+1( vì nếu P chia hết cho 2 mà P lớn hơn 2 thì P không phải số nguyên tố )
Do đó (P-1)(P+4)=2k(2k+5) chia hêt cho 2. Vậy (P-1)(P+4) chia hết cho 2
Mặt khác cũng do P là số nguyên tố lớn hơn 3 nên P sẽ có một trong 2 dạng 3k+1 hoặc 3k+2
Nếu P=3k+1 thì (P-1)(P+4)=3k(3k+5) chia hết cho 3
Nếu P=3k+2 thì (P-1)(P+4)=(3k+1)(3k+6)=(3k+1)3(k+2) chia hết cho 3. Vậy (P-1)(P+4) chia hết cho 3
Mà (2;3)=1 Nên (P-1)(P+4) chia hết cho 2*3=6
làm thế này mình cũng biết nhưng giải thích làm sao nhưng cũng cám ơn mai cho cậu 30 l-i-k-e
Bài 1 :
\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)
\(=a-b+c-d-a+c\)
\(=-\left(b+d\right)=VP\)
\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)
\(=a-b-c+d+b+c\)
\(=a+d=VP\)
\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
Xét hiệu: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)\(=0\) (do a+b+c = 0)
\(\Rightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\)\(a^3+b^3+c^3=3abc\) (đpcm)
4:3 = tứ :tam=8:4=2
4 là tứ, 3 là tam
4 :3 là tứ chia tam là tám chia tư = 2