K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2018

1) Làm được câu a chưa 

a) Xét tam giác HPB và KPC có:

\(\widehat{ABP}=\widehat{ACP}\)

\(\widehat{H}=\widehat{K}=90^o\)

\(\Rightarrow\) Tam giác HPB đồng dạng với tam giác KCP

\(\Rightarrow BP.KP=CP.HP\)

b) Tam giác HBC vuông có D là trung điểm cạnh huyền BC

\(\Rightarrow HD=\frac{BC}{2}\)

Tương tự ta cũng có \(KD=\frac{BC}{2}\)

\(\Rightarrow DK=DH\left(đpcm\right)\)

2) Gọi O là tâm hình bình hành. Qua M kẻ đường thẳng song song BD cắt AC; AD theo thứ tự tại N; P => N là trung điểm MP. Qua K kẻ đường thẳng song song BD cắt AB tại Q. Không mất tính tổng quát giả thiết Q nằm giữa A và G, G nằm giữa Q và N .Ta có:
GQ/GN = KQ/MN 
<=> GQ/GN = KQ/NP ( vì MN = NP) 
<=> GQ/GN = AQ/AN ( vì KQ/NP = GN/AN) 
<=> GQ/AQ = GN/AN 
<=> (AG - AQ)/AQ = (AN - AG)/AN ( vì GQ = AG - AQ; GN = AN - AG) 
<=> 1/AN + 1/AQ = 2/AG 
<=> OA/AN + OA/AQ = 2.OA/AG 
<=> AB/AM + AD/AK = AC/AG (đpcm) ( vì OA/AN = AB/AM; OA/AQ = AD/AK; AC = 2OA)

12 tháng 3 2018

câu 1b bạn  làm sai r, H,P,C có thẳng hàng đâu

còn câu 2 dòng thứ 6 sao ra dòng thứ 7 vậy bạn, AQ=GN hé.sao  ra???

14 tháng 1 2019

Gọi O là tâm hình bình hành
Qua M kẻ đường thẳng song song BD cắt AC; AD theo thứ tự tại N; P => N là trung điểm MP. Qua K kẻ đường thẳng song song BD cắt AB tại Q. Không mất tính tổng quát giả thiết Q nằm giữa A và G, G nằm giữa Q và N .Ta có:
GQ/GN = KQ/MN
<=> GQ/GN = KQ/NP ( vì MN = NP)
<=> GQ/GN = AQ/AN ( vì KQ/NP = GN/AN)
<=> GQ/AQ = GN/AN
<=> (AG - AQ)/AQ = (AN - AG)/AN ( vì GQ = AG - AQ; GN = AN - AG)
<=> 1/AN + 1/AQ = 2/AG
<=> OA/AN + OA/AQ = 2.OA/AG
<=> AB/AM + AD/AK = AC/AG (đpcm) ( vì OA/AN = AB/AM; OA/AQ = AD/AK; AC = 2OA)

27 tháng 11 2023

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔOAK và ΔOCH có

\(\widehat{OAK}=\widehat{OCH}\)(hai góc so le trong, AK//CH)

OA=OC

\(\widehat{AOK}=\widehat{COH}\)(hai góc đối đỉnh)

Do đó: ΔOAK=ΔOCH

=>OK=OH

=>O là trung điểm của KH

Xét ΔOAE và ΔOCF có

\(\widehat{EAO}=\widehat{FCO}\)(hai góc so le trong, AE//CF)

OA=OC

\(\widehat{AOE}=\widehat{COF}\)

Do đó: ΔOAE=ΔOCF

=>OE=OF

=>O là trung điểm của EF

Xét tứ giác EKFH có

O là trung điểm chung của EF và KH

=>EKFH là hình bình hành