Tìm \(Z \) biết:
a) \((x-5)(x+2)<0\)
b) \((x^2-5)(x^2-14)<0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>\(\dfrac{x}{-5}=\dfrac{y}{-7}=\dfrac{z}{2}=\dfrac{x-y+z}{-5+7+2}=\dfrac{-28}{4}=-7\)
=>x=35; y=49; z=-14
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/-5=y/-7=z/2=(x-y+z)/((-5)-(-7)+2)=-28/4=-7`
`-> x/-5=y/-7=z/2=-7`
`-> x=-7*-5=35, y=-7*-7=49, z=-7*2=-14`
a: =>3x+3=5x-25
=>-2x=-28
hay x=14
b: =>3x+6=-4x+20
=>7x=14
hay x=2
\(\dfrac{x}{2}=\dfrac{y}{3}\text{⇒}\dfrac{x}{10}=\dfrac{y}{15}\)
\(\dfrac{y}{5}=\dfrac{z}{4}\text{⇒}\dfrac{y}{15}=\dfrac{z}{12}\)
⇒\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-21}{-3}=7\)
⇒x=70;y=105;z=84
a, Ta có :
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)
\(\Rightarrow x=11;y=17;z=23\)
b, Đặt \(\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\Rightarrow xyz=810\)
\(\Rightarrow2k.3k.5k=810\Leftrightarrow30k^3=810\Leftrightarrow k^3=27\Leftrightarrow k=3\)
\(\Rightarrow x=6;y=9;z=15\)
a) Ta có: \(\dfrac{x-1}{2}=\dfrac{2x-2}{4};\dfrac{y-2}{3}=\dfrac{3y-6}{9};\dfrac{z-3}{4}\)
Áp dụng t/c dtsbn:
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=5\\\dfrac{y-2}{3}=5\\\dfrac{z-3}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=12\end{matrix}\right.\)
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
xyz = 810
=> 2k.3k.5k = 810
=> k = 3
\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)
a: Áp dụng tính chất của DTSBN, ta được:
x/5=y/2=(x-y)/(5-2)=9/3=3
=>x=15; y=6
b: =>(x-3)/12=3/(x-3)
=>(x-3)^2=36
=>(x-9)(x+3)=0
=>x=9 hoặc x=-3
c; x/2=y/3
=>x/10=y/15
y/5=z/4
=>y/15=z/12
=>x/10=y/15=z/12=(x-y-z)/(10-15-12)=-49/-17=49/17
=>x=490/17; y=735/17; z=588/17
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{11}=3\)
Do đó: x=6; y=9; z=15
`a)|2x-15|=13`
`**2x-15=13`
`<=>2x=28`
`<=>x=14.`
`**2x-15=-13`
`<=>2x=-2`
`<=>x=-1.`
`b)|7x+3|=66`
`**7x+3=66`
`<=>7x=63`
`<=>x9`
`**7x+3=-66`
`<=>7x=-69`
`<=>x=-69/7`
`c)|5x-2|=0`
`<=>5x-2=0`
`<=>5x=2`
`<=>x=2/5`
\(a,\Leftrightarrow\left[{}\begin{matrix}2x-5=13\\2x-5=-13\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-4\end{matrix}\right.\)
Vậy ...
\(b,\Leftrightarrow\left[{}\begin{matrix}7x+3=66\\7x+3=-66\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-\dfrac{69}{7}\end{matrix}\right.\)
Vậy ...
\(c,\Leftrightarrow5x-2=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy ...
\(a,\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5< 0\\x+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5>0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 5\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x>5\\x< -2\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< x< 5\\ \Rightarrow x\in\left\{-1;0;1;2;3;4\right\}\\ b,\Rightarrow5< x^2< 14\\ \Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)