chứng minh rằng :
a) A= 10^2008 +125 chia hết cho 45
b) B= 5^2008+5^2007+5^2006 chia hết cho 31
c) H= 8^6+ 2^20 chia hết cho 17
d) H= 313^5. 299- 313^6 . 36 chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a
có 102008 + 125 = 1000...000125 (2005 số 0)
có 1 + 0 + 0 + 0 +...+ 1 + 2 + 5 = 9
=> 1000...000125 (2005 số 0) chia hết cho 9
mà 1000...000125 (2005 số 0) chia hết cho 5
5 và 9 nguyên tố cùng nhau
=> 1000...000125 (2005 số 0) chia hết cho 45
=> 102008 + 125 chia hết cho 45
câu b
52008 + 52007 + 52006 = 52006(52 + 5 + 1) = 52006 . 31
=> 52006 . 31 chia hết 31
=> 52008 + 52007 + 52006 chia hết 31
2 câu kia để mình xem lại 1 chút nhé, có j đó ko đựoc đúng, hoặc có thể là mình làm sai
chúc may mắn
Bài 2:
a: \(5^{2008}+5^{2007}+5^{2006}\)
\(=5^{2006}\left(5^2+5+1\right)=5^{2006}\cdot31⋮31\)
b: \(8^8+2^{20}\)
\(=2^{24}+2^{20}\)
\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn
1. Xét 32^9 và 18^13
ta có 32^9=(2^5)^9=2^45
18^13>16^13=(2^4)^13=2^52
vì 18^13>2^52>2^45 nên 18^13>32^9
2.
a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)
Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)
mà A có tcung là 5 nên A \(⋮\)5
A có tổng các cso là 9 nên A\(⋮\)9
vậy A \(⋮\)45
d, bn xem có sai đề ko nhé
3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)
x+y+z=1/2 hoặc -1/2
còn lai bn tự tính nhé
a/
\(A=4^2.4^{37}+4^2.4^{38}+4^2.4^{39}=4^2\left(4^{37}+4^{38}+4^{39}\right)=\)
\(=2.8.\left(4^{37}+4^{38}+4^{39}\right)⋮8\)
b/
\(B=10^7\left(1+10+10^2\right)=10.10^6.111=\)
\(=5.10^6.222⋮222\)
c/
\(C=5^{2006}\left(1+5+5^2\right)=5^{2006}.31⋮31\)
a/ 8^7-2^18=1835008 chia hết cho 14=131072
b/10^6-5^7=921875 chia hết cho 59=15625
7^6+7^5-7^4=132055 hết cho 55=2401
a) 8^7-2^18= (2^3)-2^18=2^21-2^18=2^17 * (2^4-2)=2^17 * 14
14 chia hết cho 14 => ĐPCM
b) 10^6-5^7=5^6(2^6 - 5)=5^6 * 59
59 chia hết 59 => ĐPCM
c) 7^6 + 7^5 - 7^4 = 7^4 ( 7^2 + 7 - 1) = 7^4 * 55
55 cha hết 5 => ĐPCM
d) 16^5 + 2^15 = (2^4)^5 + 2^15= 2^15 * ( 2^5 + 1) = 2^15 * 33
33 chia hết 33 => ĐPCM
e và f chịu
g thì tính chữ số tận cùn của tổng đó
h) = 2^10 * (1 + 2 + 2^2) = 2^10 * 7
7 chia hết cho 7 => nó là 1 số tự nhiên
i chịu
mk nghĩ bn vào chtt đi chứ giải ra dài quá