Đặt S = 1 . 20 + 2 . 21 + 3 . 22 +...+ 2016 . 22015
So sánh S với 2015 . 22016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy \(\frac{1}{20}\)<\(\frac{1}{3}\)
thì \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{20}\)+...+\(\frac{1}{20}\)<\(\frac{1}{3}\)
vậy \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{3}\)
\(S=\frac{1015}{2016}+\frac{2016}{2017}+\frac{2021}{2018}=\frac{1016-1}{2016}+\frac{2017-1}{2017}+\frac{2018+3}{2018}\)
=> \(S=1-\frac{1}{2016}+1-\frac{1}{2017}+1+\frac{3}{2018}=3+\left(\frac{3}{2018}-\frac{1}{2016}-\frac{1}{2017}\right)\)
Nhận thấy; \(\frac{3}{2018}-\frac{1}{2016}-\frac{1}{2017}>0\)=> S > 3
Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)
Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)
\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)
\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)
2S=1.2+2.22+3.23+...+2016.22016
2S-S=S=(1.2+2.22+...+2016.22016)-(1+2.2+...+2016.22015)
S=2016.22016-(1+2+...+22015)
S=2016.22016-(22016-1) (1+2+...+22015=22016-1)
S=2015.22016+1
Vậy S>2015.22016
S > 2015.2^2016