Cho hai số x,y thỏa mãn điều kiện\(x+y=-1;xy=-6\)
Tính giá trị biểu thức sau :
\(Q=x^2+y^2\)
\(P=x^3+y^3\)
Mọi người mong help
Giups câu 1 là ok rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)
Áp dụng BĐT Schwarz : \(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}=4\)
Lại có \(\dfrac{1}{2xy}=\dfrac{2}{4xy}\ge\dfrac{2}{\left(x+y\right)^2}=2\)
Cộng vế với vế được P \(\ge6\) ("=" khi x = y = 1/2)
Vậy Min P = 6 <=> x = y = 1/2
\(3xy=x+y+1\ge3\sqrt[3]{xy}\Rightarrow xy\ge1\)
\(4xy=xy+x+y+1=x\left(y+1\right)+\left(y+1\right)=\left(x+1\right)\left(y+1\right)\)
\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{2xy+x+y}{4\left(xy\right)^2}=\frac{5xy-1}{4\left(xy\right)^2}\)
Xét hiệu: \(P-1=\frac{5xy-1}{4x^2y^2}-1=\frac{\left(4xy-1\right)\left(1-xy\right)}{4x^2y^2}\le0\) với mọi \(xy\ge1\)
Vậy \(P\le1\)hay max P = 1.
Dẫu "=" xảy ra <=> x = y = 1.
Áp dụng BĐT Cauchy ta có: \(3xy\ge2\sqrt{xy}+1\Leftrightarrow xy\ge1\)
Áp dụng BĐT Cauchy ta có:
\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{5xy-1}{xy\left(x+1\right)\left(y+1\right)}=\frac{5xy-1}{4\left(xy\right)^2}\), đặt t=\(\frac{1}{xy}\)
\(f\left(t\right)=\frac{5}{4}t-\frac{1}{4}t^2\)đồng biến trên (0;1] nên f(t) đạt GTLN tại t=1
Vậy GTKN của P=1 đạt được khi x=y=1
Giả sử 1 \(<\) x \(\le\) y. Đặt x + 1 = ky với k \(\in\) N*.
Ta có ky = x + 1 \(\le\) y + 1 \(<\) y + y = 2y.
Do ky < 2y nên k < 2. Ta lại có k \(\in\) N* nên k = 1.
Thay k = 1 vào x + 1 = ky được x + 1 = y
Theo đề bài thì y + 1 chia hết cho x \(\Rightarrow\) x + 1 + 1 chia hết cho x \(\Leftrightarrow\) x + 2 chia hết cho x.
\(\Rightarrow\) 2 chia hết cho x.
Vì x \(\in\) N nên x \(\in\) {1 ; 2}
Với x = 1 thì y = 1 + 1 = 2
Với x = 2 thì y = 2 + 1 = 3
Vậy (x ; y) = {(1 ; 2) ; (2 ; 3)}
Giải thích: Đáp án C
H2SO4 đặc nóng có thể hòa tan Cu
=> chỉ có Đáp án C thỏa mãn
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
Ta có : \(2xy\le x^2+y^2=8\Rightarrow xy\le4\)
\(\Rightarrow x^2+y^2+2xy\le16\Leftrightarrow\left(x+y\right)^2\le4^2\Rightarrow-4\le x+y\le4\)
Vậy Max x+y là 4 khi x=y=2
Min x+y là -4 khi x=y=-2
Bài giải :
Vì x, y là các số tự nhiên lớn hơn 1 nên giả sử 1 < x ≤ y.
+) Ta có x + 1 ⋮ y => x + 1 = ky (k ∈ N*)
=> ky = x + 1 ≤ y + 1 < y + y = 2y
=> ky < 2y
=> k < 2, mà k ∈ N* nên suy ra: k = 1 là thỏa mãn.
=> x + 1 = y
+) Ta có: y + 1 ⋮ x
=> x + 1 + 1 ⋮ x
=> x + 2 ⋮ x, mà x ⋮ x nên: 2 ⋮ x
=> x ∈ {1; 2}
TH1: Với x = 1 => y = 1 + 1 = 2 (Thỏa mãn)
TH2: Với x = 2 => y = 1 + 2 = 3 (Thỏa mãn).
Đ/s: (x, y) ∈ {(1, 2); (2, 3); (2, 1); (3, 2)}.
\(Q=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2\left(-6\right)=13\\ P=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\\ P=\left(-1\right)^3-3\left(-6\right)\left(-1\right)=-1-18=-19\)
\(P=\left(x+y\right)^2-2xy=\left(-1\right)^2-2\cdot\left(-6\right)=1+12=13\)