Cho tam giác ABC có AM=MD=DB ; AN=NE=EC . Nối MN , ND , DE , DC . Biết diện tích tam giác AMN = 3cm2 . Tình diện tích hình thang MNED và diện tích tam giác ABC . ( vẽ hộ mình luôn cái hình )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhé
vì AD là phân giác của \(\widehat{BAC}\) ⇒ \(\widehat{BAD}=\widehat{MAD}\) =\(\dfrac{\widehat{BAC}}{2}\)
a) xét ΔABD và ΔAMD, có:
AM=AB (gt)
\(\widehat{BAD}=\widehat{MAD}\) (cmt)
AD chung
⇒ ΔABD = ΔAMD (c.g.c) (đpcm)
b) Từ ΔABD = ΔAMD (cmt)
⇒ BD=DM( 2 cạnh t/ứng) (đpcm)
\(\widehat{ABD}=\widehat{AMD}\) (2 góc t/ứng)(đpcm)
c) phần này có lẽ đề bài sai , phải là c/m Δ BDN =ΔMDC mới đúng.
vì \(\widehat{ABD}=\widehat{AMD}\) (cmt) ⇒ \(\widehat{DBN}=\widehat{DMC}\) ( do \(\widehat{ABD}\) và \(\widehat{DBN}\) là 2 góc kề bù; \(\widehat{AMD}\) và \(\widehat{DMC}\)là 2 góc kề bù)
vì \(\widehat{BDN}\) và \(\widehat{MDC}\) là 2 góc đối đỉnh⇒ \(\widehat{BDN}\) =\(\widehat{MDC}\)
Xét Δ BDN và ΔMDC, có:
\(\widehat{BDN}\) =\(\widehat{MDC}\)(cmt)
BD=DM (cmt)
\(\widehat{DBN}=\widehat{DMC}\) (cmt)
⇒Δ BDN = ΔMDC (g.c.g) (đpcm)
d) từ Δ BDN = ΔMDC (cmt) ⇒ BN=MC
mà AB=AM ⇒ AB+BN =AM+MC
⇔AN=AC.⇒ Δ ANC cân tại A.
và AB=AM(gt) ⇒ ΔABM cân tại A
mà AD là phân giác của \(\widehat{BAM}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔABM⇔ AD ⊥ BM(đpcm)
Vì Δ ANC cân tại A (cmt)
AD là phân giác của \(\widehat{NAC}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔACN.⇔ AD⊥CN.
Mà AD⊥ BM⇒ BM//CN(đpcm)
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
=>DB=DM và \(\widehat{ABD}=\widehat{AMD}\)
c: Ta có: \(\widehat{ABD}+\widehat{NBD}=180^0\)(hai góc kề bù)
\(\widehat{AMD}+\widehat{CMD}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AMD}\)
nên \(\widehat{NBD}=\widehat{CMD}\)
Xét ΔDBN và ΔDMC có
\(\widehat{DBN}=\widehat{DMC}\)
DB=DM
\(\widehat{BDN}=\widehat{MDC}\)
Do đó: ΔDBN=ΔDMC
d: Ta có: ΔABD=ΔAMD
=>BD=MD
=>D nằm trên đường trung trực của BM(1)
ta có: AB=AM
=>A nằm trên đường trung trực của BM(2)
Từ (1) và (2) suy ra AD là đường trung trực của BM
=>AD\(\perp\)BM
Ta có: ΔDBN=ΔDMC
=>BN=MC
Xét ΔABC có \(\dfrac{AB}{BN}=\dfrac{AM}{MC}\)
nên BM//NC
a: Xét ΔAMC và ΔDMB có
MA=MD
góc AMC=góc DMB
MC=MB
=>ΔAMC=ΔDMB
b: ΔAMC=ΔDMB
=>góc MAC=góc MDB
=>AC//BD
=>BD vuông góc BA
=>ΔBAD vuông tại B
c: XétΔABC vuông tại A và ΔBAD vuông tại A có
AB chung
AC=BD
=>ΔABC=ΔBAD
d: AM=1/2BC
a, Vì tam giác ABC vuông tại A, M là trung điểm BC
=? AM = MB = MC = BC/2 = 5 cm
Theo định lí Pytago tam giác ABC vuông tại A
\(AB=\sqrt{BC^2-AC^2}=6cm\)
Diện tích tam giác ABC là\(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.6.8=24cm^2\)
b, Vì AD là đường phân giác nên \(\frac{AB}{AC}=\frac{DB}{DC}\Rightarrow\frac{DC}{AC}=\frac{DB}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\frac{DC}{8}=\frac{DB}{6}=\frac{DC+DB}{14}=\frac{10}{14}=\frac{5}{7}\Rightarrow DC=\frac{40}{7}cm;DB=\frac{30}{7}cm\)
diện tích tam giác ABC = 27 cm2
diện tích tam giác AMN = 4,5
diện tích hình thang MNED = 9 cm2
diện h hình thang DECB = 13,5 cm2
diễn giải ra từng bước hộ mình với