Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p/s: Bạn tự vẽ hình nha!! ^ ^
a) Xét \(\Delta\)AMC và \(\Delta\)DMB có:
AM = MD (gt)
\(\widehat{AMC}=\widehat{BMD}\)(hai góc đối đỉnh).
BM = MC (gt)
=> Xét \(\Delta\)AMC = \(\Delta\)DMB (c.g.c)
b) Xét tứ giác ABCD có:
AM = MD (gt)
BM = MC (gt)
\(\widehat{BAC}\)= 90 độ
=> ABCD là hình bình hành (DHNB)
=> \(\Delta ABC=\Delta BAD\)(đpcm).
c) Vì \(\Delta\)ABC vuông tại A, đường trung tuyến AM => AM = 1/2 BC (tính chất đường trung tuyến bằng nửa cạnh huyền trong tam giác vuông).
_Kik nha!! ^ ^
a) tam giác MAC = tam giác BAD theo trường hợp cạnh góc cạnh
Có: MC = MB (AM trung tuyến)
AMC = DMB (2 góc đối đỉnh)
MA = MD (theo giả thiết)
=> 2 tam giác bằng nhau theo trường hợp cạnh góc cạnh
b)
Tam giác ABC có góc A=90 độ
Suy ra: góc ACB+ góc CBA= 90 độ
Mà : góc ACB (hay góc ACM) = DBM (2 tam giác bằng nhau, chứng minh trên)
Suy ra: góc DBM + CBA = 90 độ
Hay DBA=90 độ
a/ Xét tam giác AMC và tam giác DMB có:
Góc AMC=BMD(đối đỉnh)
BM=MC(trung tuyến AM)
AM=MD(gt)
=> Tam giác AMC=tam giác DMB(c-g-c)
b/ Vì tam giác AMC=tam giác DMB(câu a)
=>Góc BDM=CAM(góc tương ứng)
=> BD song song với AC.
Mà AC vuông góc với AB(tam giác ABC vuông tại A)
=> BD vuông góc với AB.
=> Góc ABD=90 độ.
c/ Xét tam giác ABD và tam giác BAC có:
Góc BAC=ABD=90 độ
BD= AC(cạnh tương ứng của tam giác AMC=tam giác DMB)
AB chung
=> Tam giác ABD=tam giác BAC( c-g-c)
c/ AM là trung tuyến tam giác ABC
=> AM<BC
a/ Xét tứ giác ABCD có:
M là trung điểm BC
M là trung điểm AD
=> tứ giác ABCD là hình bình hành (Dù nhìn hình không giống vì nó có thể là hcn nhưng dựa vào lý thuyết hoàn toàn chuẩn!)
=> BD//AC
Mà: AB vuông góc AC (gt)
=> AB vuông góc BD
=> tam giác ABD vuông tại B
b/ Xét tam giác ABD và tam giác ABC có:
góc ABD = góc BAC = 90 độ (cmt)
góc ADB = góc ACB (BD//AC, đồng vị)
AB: chung
=> tam giác ABD = tam giác BAC (g.c.g)
Xét tam giác ABC vuông tại A có AM là đường trung tuyến => AM = BM = CM = 1/2 BC (đpcm)
=> AM < BC (thêm cái này đi cho chắc ăn!)
a , Xét \(\Delta AMC\)và \(\Delta DMB\)có :
BM = MC ( M là trung điểm của BC )
AM = MD ( giả thiết )
\(\widehat{AMC}=\widehat{BMD}\)( đối đỉnh )
=> \(\Delta AMC\)= \(\Delta DMB\) ( c.g.c )
=> BM = MA ( 2 cạnh tương ứng ) ; \(\widehat{MCA}=\widehat{MDB}\) ( 2 góc tương ứng )
b , Vì \(\widehat{MCA}=\widehat{MDB}\)= > \(\widehat{ADB}=\widehat{BCA}\)
Vì BM = MA => \(\Delta AMB\)cân tại M .
=> \(\widehat{MAB}=\widehat{MBA}\)
Ta có : \(\widehat{ABC}+\widehat{ACB}=90^0\)( \(\Delta ABC\perp A\))
hay \(\widehat{ABM}+\widehat{ACM}=90^0\)
vì \(\widehat{MCA}=\widehat{MDB}\); \(\widehat{MAB}=\widehat{MBA}\)
=> \(\widehat{BAM}+\widehat{BDM}=90^0\)
=> \(\widehat{BAD}=90^0\)
c , Vì AM = BM
mà BM = \(\frac{1}{2}BC\)
=> AM = \(\frac{1}{2}BC\)
a) Xét \(\Delta AMC\)và \(\Delta DMB\),ta có :
AM = DM(gt)
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
CM = BM(vì M là trung điểm của BC)
=> \(\Delta AMC=\Delta DMB\left(c.g.c\right)\)
=> \(\widehat{C}=\widehat{B_1}\)(hai góc tương ứng)
AC = BD(hai cạnh tương ứng)
Khi đó \(\widehat{ABD}=\widehat{B_1}+\widehat{B_2}=\widehat{B_1}+\widehat{C}=90^0\)
Vậy góc ABD = 900
b) Xét \(\Delta ABC\)và \(\Delta BAD\)có :
AB chung
AC = BD(cmt)
=> \(\Delta ABC=\Delta BAD\)(hai cạnh góc vuông)
c) Từ kết quả câu b)
=> BC = AD = 2AM <=> \(AM=\frac{1}{2}BC\)
Em kiểm tra lại đề bài nhé! Trên tia đối tia AM hay tia đối tia MA ?
a: Xét ΔAMC và ΔDMB có
MA=MD
góc AMC=góc DMB
MC=MB
=>ΔAMC=ΔDMB
b: ΔAMC=ΔDMB
=>góc MAC=góc MDB
=>AC//BD
=>BD vuông góc BA
=>ΔBAD vuông tại B
c: XétΔABC vuông tại A và ΔBAD vuông tại A có
AB chung
AC=BD
=>ΔABC=ΔBAD
d: AM=1/2BC
đề sai mà nhỉ?