K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

\(=\dfrac{7}{6}\cdot\dfrac{3}{14}-\dfrac{4}{7}\cdot\dfrac{21}{8}+1=\dfrac{1}{4}-\dfrac{3}{2}+1=\dfrac{1}{4}-\dfrac{6}{4}+\dfrac{4}{4}=-\dfrac{1}{4}\)

31 tháng 12 2023

a: \(\left(18\dfrac{1}{3}:\sqrt{225}+8\dfrac{2}{3}\cdot\sqrt{\dfrac{49}{4}}\right):\left[\left(12\dfrac{1}{3}+8\dfrac{6}{7}\right)-\dfrac{\left(\sqrt{7}\right)^2}{\left(3\sqrt{2}\right)^2}\right]:\dfrac{1704}{445}\)

\(=\left(\dfrac{55}{3}:15+\dfrac{26}{3}\cdot\dfrac{7}{4}\right):\left[\left(12+\dfrac{1}{3}+8+\dfrac{6}{7}\right)-\dfrac{7}{18}\right]\cdot\dfrac{445}{1704}\)

\(=\left(\dfrac{55}{45}+\dfrac{91}{6}\right):\left[20+\dfrac{101}{126}\right]\cdot\dfrac{445}{1704}\)

\(=\dfrac{295}{18}:\dfrac{2621}{126}\cdot\dfrac{445}{1704}\)

\(=\dfrac{295}{18}\cdot\dfrac{126}{2621}\cdot\dfrac{445}{1704}\simeq0,21\)

b: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)

c: \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{n+1}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{n}{n+1}\)

\(=\dfrac{1}{n+1}\)

d: \(-66\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)+124\cdot\left(-37\right)+63\cdot\left(-124\right)\)

\(=-66\cdot\dfrac{33-22+6}{66}+124\left(-37-63\right)\)

\(=-17-12400=-12417\)

e: \(\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)

\(=\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)

\(=\dfrac{7}{4}\cdot33\cdot\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)\)

\(=33\cdot\dfrac{7}{4}\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)

\(=33\cdot\dfrac{7}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)

\(=33\cdot\dfrac{7}{4}\cdot\dfrac{4}{21}=\dfrac{33\cdot1}{3}=11\)

24 tháng 12 2023

a: \(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)

\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}\)

\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)

b: \(M=1-\dfrac{5}{\sqrt{196}}-\dfrac{5}{\left(2\sqrt{21}\right)^2}-\dfrac{\sqrt{25}}{204}-\dfrac{\left(\sqrt{5}\right)^2}{374}\)

\(=1-\dfrac{5}{14}-\dfrac{5}{84}-\dfrac{5}{204}-\dfrac{5}{374}\)

\(=1-5\left(\dfrac{1}{14}+\dfrac{1}{84}+\dfrac{1}{204}+\dfrac{1}{374}\right)\)

\(=1-5\left(\dfrac{1}{2\cdot7}+\dfrac{1}{7\cdot12}+\dfrac{1}{12\cdot17}+\dfrac{1}{17\cdot22}\right)\)

\(=1-\left(\dfrac{5}{2\cdot7}+\dfrac{5}{7\cdot12}+\dfrac{5}{12\cdot17}+\dfrac{5}{17\cdot22}\right)\)

\(=1-\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}\right)\)

\(=1-\left(\dfrac{1}{2}-\dfrac{1}{22}\right)\)

\(=1-\dfrac{11-1}{22}=1-\dfrac{10}{22}=\dfrac{12}{22}=\dfrac{6}{11}\)

\(\sqrt{\dfrac{16}{49}}+\left(\dfrac{1}{2}\right)^3-\left|-\dfrac{4}{7}\right|-\dfrac{7}{8}\)

\(=\dfrac{4}{7}+\dfrac{1}{8}-\dfrac{4}{7}-\dfrac{7}{8}\)

\(=\dfrac{1}{8}-\dfrac{7}{8}=-\dfrac{6}{8}=-\dfrac{3}{4}\)

\(\left|\dfrac{1}{2}-\dfrac{3}{5}\right|\cdot\sqrt{9}+0,5\left(-2\dfrac{3}{5}\right)\)

\(=\left|\dfrac{5-6}{10}\right|\cdot3+\dfrac{1}{2}\cdot\dfrac{-13}{5}\)

\(=\dfrac{1}{10}\cdot3+\dfrac{1}{2}\cdot\dfrac{-13}{5}\)

\(=\dfrac{3}{10}-\dfrac{13}{10}=-\dfrac{10}{10}=-1\)

1:

a: =7/5(40+1/4-25-1/4)-1/2021

=21-1/2021=42440/2021

b: =5/9*9-1*16/25=5-16/25=109/25

7 tháng 9 2023

a) \(5^6:5^5+\left(\dfrac{4}{9}\right)^0=5^{6-5}+1=5+1=6\)

b) \(\left(\dfrac{3}{7}\right)^{21}:\left(1-\dfrac{40}{49}\right)^3\)

\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^3\)

\(=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^3\)

\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^6\)

\(=\left(\dfrac{3}{7}\right)^{21-6}=\left(\dfrac{3}{7}\right)^{15}\)

c) \(\left(\dfrac{2}{3}\right)^3-\left(\dfrac{-52}{3}\right)^0+\dfrac{4}{9}\)

\(=\dfrac{8}{27}-1+\dfrac{4}{9}\)

\(=\dfrac{8-27+12}{27}=-\dfrac{7}{27}\)

7 tháng 9 2023

\(a)5^6:5^5+\left(\dfrac{4}{9}\right)^0=5^1+1=6\)

\(b,\left(\dfrac{3}{7}\right)^{21}:\left(1-\dfrac{40}{49}\right)^3\)

\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{49-40}{49}\right)^3\)

\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^3=\left(\dfrac{3}{7}\right)^{21}:[\left(\dfrac{3}{7}\right)^2]^3\)

\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^6=\left(\dfrac{3}{7}\right)^{21-6}\)

\(=\left(\dfrac{3}{7}\right)^{15}\)

\(c,3.\left(\dfrac{2}{3}\right)^3-\left(\dfrac{-52}{3}\right)^0+\dfrac{4}{9}\)

\(=3.\dfrac{8}{27}-1+\dfrac{4}{9}\)

\(=\dfrac{8}{9}-1+\dfrac{4}{9}\)

\(=\dfrac{8-9+4}{9}=\dfrac{1}{3}\)

M=\(\left(\dfrac{55}{3}:15+\dfrac{26}{3}.\dfrac{7}{2}\right):\left[\left(\dfrac{37}{3}+\dfrac{62}{7}\right)-\dfrac{7}{18}\right]:\dfrac{1704}{445}\)

M=\(\left(\dfrac{11}{9}+\dfrac{91}{3}\right):\left[\dfrac{445}{21}-\dfrac{7}{18}\right]:\dfrac{1704}{445}\)

M=\(\dfrac{284}{9}:\dfrac{2621}{126}:\dfrac{1704}{445}\)

M=\(\dfrac{3115}{7863}\)

27 tháng 3 2022

\(\dfrac{-5}{2}-\left(\dfrac{-7}{2}-\dfrac{7}{4}\right):\left(\dfrac{-7}{3}\right)-\left(\dfrac{-7}{3}\right)-2021^0\)

\(=\dfrac{-5}{2}-\dfrac{9}{4}+\dfrac{7}{3}-1\)

\(=-\dfrac{41}{12}\)

23 tháng 11 2021

\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)

22 tháng 2 2023

a)

`(2x-1)(x+2/3)=0`

\(< =>\left[{}\begin{matrix}2x-1=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

b)

\(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)

\(< =>\dfrac{x+4}{2019}+1+\dfrac{x+3}{2020}+1=\dfrac{x+2}{2021}+1+\dfrac{x+1}{2022}+1\)

\(< =>\dfrac{x+2023}{2019}+\dfrac{x+2023}{2020}=\dfrac{x+2023}{2021}+\dfrac{x+2023}{2022}\)

\(< =>\left(x+2023\right)\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\right)=0\)

\(< =>x+2023=0\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\ne0\right)\\ < =>x=-2023\)

22 tháng 2 2023

sai rồi , x không thể có 2 giá trị