Cho phân số B =10n/5n−3 (n thuộc Z)
a, Tìm n để B thuộc Z
b, Tìm n thuộc Z để B có giá trị lớn nhất
c,Tìm GTLN của B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
+ ) để B thuộc Z thì 10n phải chia hết cho 5n - 3
+ ) và 5n - 3 chia hết cho 5n - 3 => 2.( 5n - 3 ) = 10n -6 chia hết cho 5n - 3
từ 2 điều kiện trên =>( 10n -6 ) - ( 10n ) chia hết cho 5n -3 ( áp dụng tính chất đồng dư tự kham khảo )
=> 6 chia hết cho 5 n - 3 => 5n - 3 thuộc ước của 6
th1) 5n - 3 = -6 => n ko có giá trị
th2) 5n - 3 = -3 => ...
th3) 5n -3 = -2 => ...
th4) 5n - 3 = -1 => ...
th5) 5n - 3 = 1 => ...
th6) 5n - 3 = 2 => ....
còn 2 th nua tu =>
a, \(B=\frac{10n}{5n-3}\inℤ\Leftrightarrow10n⋮5n-3\)
\(\Rightarrow10n-6+6⋮5n-3\)
\(\Rightarrow2\left(5n-3\right)+6⋮5n-3\)
\(2\left(5n-3\right)⋮5n-3\)
\(\Rightarrow6⋮5n-3\)
r` đến đây tự làm tiếp đc
b, \(B=\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{2\left(5n-3\right)+6}{5n-3}=\frac{2\left(5n-3\right)}{5n-3}+\frac{6}{5n-3}=2+\frac{6}{5n-3}\)
để B lớn nhất thì \(\frac{6}{5n-3}\) lớn nhất
\(\Rightarrow5n-3\) là số nguyên dương nhỏ nhất
+ xét 5n-3=1
=> 5n = 4
=> n = 4/5 (loại)
+ xét 5n-3=2
=> 5n = 5
=> n=1 (tm)
vậy n = 1 và \(B_{max}=2+\frac{6}{2}=5\)
a) \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\Rightarrow\frac{6}{5n-3}\in Z\Rightarrow5n-3\in U\left(6\right)\)
Ta có bảng sau:
5n - 3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -0,6 | 0 | 0,2 | 0,4 | 0,8 | 1 | 1,2 | 1,8 |
Mà n thuộc Z => n = { 0 ; 1 }
b) Để A lớn nhất thì \(2+\frac{6}{5n-3}\)có giá trị lớn nhất => \(\frac{6}{5n-3}\)lớn nhất
=> 5n - 3 nguyên dương nhỏ nhất ; 5n - 3 thuộc ước của 6 và n thuộc Z
=> 5n - 3 = 2 => x = 1 và \(\frac{6}{5n-3}=\frac{6}{2}=3\)
Thay \(3=\frac{6}{5n-3}\)vào \(A=2+\frac{6}{5n-3}\)ta có:
\(A=2+3=5\)
Vậy giá trị lớn nhất của A là 5 khi x = 1
a, Ta có : \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}\)
\(=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
\(=2+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\)
\(\Rightarrow\frac{6}{5n-3}\in Z\)
\(\Rightarrow6\)chia hết cho\(5n-3\)
\(\Rightarrow5n-3\inƯ\left(6\right)\)
Ta có bảng sau :
5n-3 | 1 | -1 | 2 | -2 | 3 | -3 |
5n | 4 | 2 | 5 | 1 | 6 | 0 |
n | 0,8 | 0,4 | 1 | 0,2 | 1,2 | 0 |
Vì \(n\in Z\)=> \(n\in\left\{0;1\right\}\)
Ta có:\(\frac{10}{5n-3}=\frac{2.\left(5n-3\right)+6}{5n-3}=2+\frac{6}{n-3}\)
Suy ra:6 chia hết cho n-3
Hoặc n-3\(\in\)Ư(6)
Vậy Ư(6) là:(1,2,3,6)
Do đó ta có bảng sau:
5n-3 | 1 | 2 | 3 | 6 |
5n | 4 | 5 | 6 | 9 |
n | ko TM | 1 | ko TM | ko TM |
Vậy n=1
Giải:
Để B thuộc Z thì 10n chia hết cho 5n - 3
\(10n⋮5n-3\)
\(\Rightarrow\left(10n-6\right)+6⋮5n-3\)
\(\Rightarrow2\left(5n-3\right)+6⋮5n-3\)
\(\Rightarrow6⋮5n-3\)
\(\Rightarrow5n-3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
+) \(5n-3=1\Rightarrow n=\frac{4}{5}\) ( loại )
+) \(5n-3=-1\Rightarrow n=\frac{2}{5}\) ( loại )
+) \(5n-3=2\Rightarrow n=1\) ( chọn )
+) \(5n-3=-2\Rightarrow n=\frac{1}{5}\) ( loại )
+) \(5n-3=3\Rightarrow n=\frac{6}{5}\) ( loại )
+) \(5n-3=-3\Rightarrow n=0\) ( chọn )
+) \(5n-3=6\Rightarrow n=\frac{9}{5}\) ( loại )
+) \(5n-3=-6\Rightarrow n=\frac{-3}{5}\) ( loại )
Vì 0 < 1 nên n = 1 để B có giá trị lớn nhất
Vậy n = 1