K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

a có:\(\frac{\left(x-y\right)^2}{xy}\ge0\forall x,y\)

      \(\Leftrightarrow\frac{x^2+y^2-2xy}{xy}\ge0\)

       \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2\ge0\)

       \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)

Áp dụng BĐT Cô-si vào các số dương \(\frac{x^2}{y^2},\frac{y^2}{x^2}\)ta có:

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}.\frac{y^2}{x^2}}=2\left(2\right)\)

Áp dụng BĐT \(\left(1\right),\left(2\right)\)ta được:

\(A=3\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-8\left(\frac{x}{y}+\frac{y}{x}\right)\ge3.2-8.2=-10\)

Dấu '=' xảy ra khi \(x=y\)

Vậy \(A_{min}=-10\)khi \(x=y\)

22 tháng 8 2017

Bđt phụ \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\forall\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2+b^2-2ab=\left(a-b\right)^2\ge0\)(đúng)

Áp dụng ta được : 

\(A\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)

10 tháng 4 2019

Ta có:\(\frac{\left(x-y\right)^2}{xy}\ge0\forall x,y\)

      \(\Leftrightarrow\frac{x^2+y^2-2xy}{xy}\ge0\)

       \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2\ge0\)

       \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)

Áp dụng BĐT Cô-si vào các số dương \(\frac{x^2}{y^2},\frac{y^2}{x^2}\)ta có:

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}.\frac{y^2}{x^2}}=2\left(2\right)\)

Áp dụng BĐT \(\left(1\right),\left(2\right)\)ta được:

\(A=3\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-8\left(\frac{x}{y}+\frac{y}{x}\right)\ge3.2-8.2=-10\)

Dấu '=' xảy ra khi \(x=y\)

Vậy \(A_{min}=-10\)khi \(x=y\)

^^

16 tháng 6 2016

Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}=t^2-2\). Ta có:

\(A=3\left(t^2-2\right)-8t=3t^2-8t-6\)nên:

\(A\ge-10\Leftrightarrow3t^2-8t-6\ge-10\Leftrightarrow3t^2-8t+4\ge0\Leftrightarrow\left(t-2\right)\left(3t-2\right)\ge0\), luôn đúng do:

\(t=\frac{x}{y}+\frac{y}{x}\ge2\)với \(x,y\) cùng dấu và \(t\le-2\) với \(x,y\)khác dấu.

Dấu "=" xảy ra khi \(t=2\Leftrightarrow x=y.\)

AH
Akai Haruma
Giáo viên
24 tháng 12 2021

Lời giải:

Ta có: $A=x^2+\frac{1}{y(x-y)}$. Đặt $x-y=a$ với $a>0$ thì áp dụng BĐT AM-GM ta có:

$A=(a+y)^2+\frac{1}{ay}\geq 4ay+\frac{1}{ay}\geq 2\sqrt{4ay.\frac{1}{ay}}=4$

Vậy $A_{\min}=4$ khi $x=\sqrt{2}; y=\frac{1}{\sqrt{2}}$

14 tháng 1 2021

tao chơi hayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy tao đó

14 tháng 1 2021

Áp dụng bđt: a2 + b2 > = (a + b)2/2

Cm đúng <=> 2a2 + 2b2 - a2 - 2ab - b2 > = 0

<=> (a - b)> = 0 (luôn đúng với mọi a,b

Khi đó, ta có: A = \(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

Áp dụng bđt: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

CM đúng <=> (a + b)2 > = 4ab

<=> (a - b)2 > = 0 (luôn đúng với mọi a,b)

Ta lại có: A \(\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+\frac{4}{1}\right)^2}{2}=18\)

Dấu"=" xảy ra <=> x = y = 1/2

Vậy minA = 18/ <=> x = y = 1/2

11 tháng 3 2020

Làm tiếp ạ

\(\Rightarrow P\ge\frac{289}{16}\)

Dấu"="Xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy MIN P=\(\frac{289}{16}\)\(\Leftrightarrow x=y=\frac{1}{2}\)

11 tháng 3 2020

Em chả có cách gì ngoài cô si mù mịt :v

\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=\left(x^2+\frac{1}{16y^2}+\frac{1}{16y^2}+.....+\frac{1}{16y^2}\right)\left(y^2+\frac{1}{16x^2}+\frac{1}{16x^2}+.....+\frac{1}{16x^2}\right)\)

\(\ge17\sqrt[17]{\frac{x^2}{16^{16}\cdot y^{32}}}\cdot17\sqrt[17]{\frac{y^2}{16^{16}\cdot x^{32}}}\)

\(=17^2\sqrt[17]{\frac{x^2y^2}{16^{32}\cdot x^{32}\cdot y^{32}}}\)

\(=17^2\sqrt[17]{\frac{1}{16^{32}\cdot\left(xy\right)^{30}}}\)

\(\ge17^2\sqrt[17]{\frac{1}{16^{32}\left(\frac{x+y}{2}\right)^{60}}}=\frac{289}{16}\)

Dấu "=" xảy ra tại x=y=1/2

16 tháng 3 2021

\(Q=\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}=\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)

\(=\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)

\(=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)

Áp dụng bất đẳng thức AM-GM ta có :

\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)

\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

\(Q=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}=\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}=1\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y>0\\x=y\\xy=4\end{cases}}\Rightarrow x=y=2\)

Vậy GTNN của Q là 1 <=> x = y = 2

17 tháng 3 2021

Or

\(Q-1=\frac{\left(x^2-y^2\right)^2+2\left(x+y\right)\left(x^2+y^2-8\right)}{4\left(x+2\right)\left(y+2\right)}\ge0\)*đúng do \(x^2+y^2\ge2xy=8\)*

Do đó \(Q\ge1\)

Đẳng thức xảy ra khi x = y = 2

19 tháng 5 2017

Dự đoán dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) ta tính được \(A=\frac{1}{4}\)

Ta sẽ chứng minh nó là GTNN của A

Thật vậy áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=Σ\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\)

Do đó ta cần phải chứng minh \(\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{x+y+z}{4}\)

\(\Leftrightarrow4\left(x^2+y^2+z^2\right)^2\ge\left(x+y+z\right)Σ\left(2x^3+x^2y+x^2z\right)\)

\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+6x^2y^2-2x^2yz\right)\ge0\)

\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+4x^2y^2\right)+Σ\left(2x^2y^2-2x^2yz\right)\ge0\)

\(\LeftrightarrowΣ\left(x^4-3x^3y+4x^2y^2-3xy^3+y^4\right)+Σ\left(x^2z^2-2z^2xy+y^2z^2\right)\ge0\)

\(\LeftrightarrowΣ\left(x-y\right)^2\left(x^2-xy+y^2\right)+Σz^2\left(x-y\right)^2\ge0\) (đúng)

Vậy \(x=y=z=\frac{1}{3}\) thì \(A_{Min}=\frac{1}{4}\)