K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2020

Làm tiếp ạ

\(\Rightarrow P\ge\frac{289}{16}\)

Dấu"="Xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy MIN P=\(\frac{289}{16}\)\(\Leftrightarrow x=y=\frac{1}{2}\)

11 tháng 3 2020

Em chả có cách gì ngoài cô si mù mịt :v

\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=\left(x^2+\frac{1}{16y^2}+\frac{1}{16y^2}+.....+\frac{1}{16y^2}\right)\left(y^2+\frac{1}{16x^2}+\frac{1}{16x^2}+.....+\frac{1}{16x^2}\right)\)

\(\ge17\sqrt[17]{\frac{x^2}{16^{16}\cdot y^{32}}}\cdot17\sqrt[17]{\frac{y^2}{16^{16}\cdot x^{32}}}\)

\(=17^2\sqrt[17]{\frac{x^2y^2}{16^{32}\cdot x^{32}\cdot y^{32}}}\)

\(=17^2\sqrt[17]{\frac{1}{16^{32}\cdot\left(xy\right)^{30}}}\)

\(\ge17^2\sqrt[17]{\frac{1}{16^{32}\left(\frac{x+y}{2}\right)^{60}}}=\frac{289}{16}\)

Dấu "=" xảy ra tại x=y=1/2

30 tháng 12 2018

\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\cdot\frac{x-1}{x}\cdot\frac{y-1}{y}\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\cdot\frac{\left(-x\right)\left(-y\right)}{xy}\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)

\(=1+\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1+\frac{x+y}{xy}+\frac{1}{xy}\)

\(=1+\frac{2}{xy}\ge1+\frac{2}{\frac{\left(x+y\right)^2}{4}}=1+\frac{2}{\frac{1}{4}}=1+8=9\)

Vậy GTNN của B = 9 khi \(x=y=\frac{1}{2}\)

14 tháng 2 2020

Từ điều kiện suy ra \(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

Áp dụng BĐT Cô-si, ta có :

\(3\le\sqrt{xy}+\sqrt{x}.1+\sqrt{y}.1\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}\)

\(\Rightarrow x+y\ge2\)

Ta có : \(\frac{x^2}{y}+y\ge2\sqrt{\frac{x^2}{y}.y}=2x\)\(\frac{y^2}{x}+x\ge2\sqrt{\frac{y^2}{x}.x}=2y\)

\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}+x+y\ge2x+2y\)

\(\Rightarrow P=\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\ge2\)

Vậy GTNN của P là 2 khi x = y = 1

19 tháng 5 2017

Dự đoán dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) ta tính được \(A=\frac{1}{4}\)

Ta sẽ chứng minh nó là GTNN của A

Thật vậy áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=Σ\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\)

Do đó ta cần phải chứng minh \(\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{x+y+z}{4}\)

\(\Leftrightarrow4\left(x^2+y^2+z^2\right)^2\ge\left(x+y+z\right)Σ\left(2x^3+x^2y+x^2z\right)\)

\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+6x^2y^2-2x^2yz\right)\ge0\)

\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+4x^2y^2\right)+Σ\left(2x^2y^2-2x^2yz\right)\ge0\)

\(\LeftrightarrowΣ\left(x^4-3x^3y+4x^2y^2-3xy^3+y^4\right)+Σ\left(x^2z^2-2z^2xy+y^2z^2\right)\ge0\)

\(\LeftrightarrowΣ\left(x-y\right)^2\left(x^2-xy+y^2\right)+Σz^2\left(x-y\right)^2\ge0\) (đúng)

Vậy \(x=y=z=\frac{1}{3}\) thì \(A_{Min}=\frac{1}{4}\)

22 tháng 10 2017

ta có: xy+yz+zx=1

=> \(1+x^2=x^2+xy+yz+xz=\left(x+z\right)\left(x+y\right)\)

c/m tương tự ta đc: \(1+y^2=\left(x+y\right)\left(y+z\right)\)

                                \(1+z^2=\left(y+z\right)\left(z+x\right)\)

thay vào A ta đc:

\(A=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(y+z\right)\left(z+x\right)}{\left(x+z\right)\left(x+y\right)}}+y\sqrt{\frac{\left(y+z\right)\left(z+x\right)\left(x+z\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+z\right)\left(x+y\right)\left(x+y\right)\left(y+z\right)}{\left(y+z\right)\left(x+z\right)}}\)\(\Rightarrow A=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

\(\Rightarrow A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(\Rightarrow A=2\left(xy+yz+zx\right)\)

\(\Rightarrow A=2\) vì xy+yz+zx=1