Choa+b>c;b+c>a;c+a>b, chứng tỏ rằng: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\) không thể là một số tự nhiên.
Gíup mk nha, mk đang cần gấp lắm đó nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức a^2+b^2+c^2 > ab+bc+ac ta có :
a^8 + b^8 + c^8 > (ab)^4 + (bc)^4 + (ca)^4 > (ab)^2.(bc)^2 + (bc)^2.(ca)^2 + (ca)^2.
(ab)^2
> ab.bc.bc.ca + bc.ca.ca.ab + ca.ab.ab.bc = a^2.b^2.c^2(bc + ab + ac)
\(\Rightarrow\) (a^8 + b^8 + c^8)/(a^3.b^3.c^3) > a^2.b^2.c^2(ab + bc + ca)/(a^3.b^3.c^3) = (ab + bc
+ ca)/abc = 1/a + 1/b + 1/c
\(\Rightarrow\) a^8 + b^8 + c^8 > (abc)^3 + (1/a + 1/b + 1c) (đpcm)
Ta có : \(a^8+b^8+c^8\ge\left(abc\right)^3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (1)
\(\Leftrightarrow a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ac\right)\)
Áp dụng bất đẳng thức phụ : \(x^2+y^2+z^2\ge xy+yz+zx\) (có thể chứng minh bằng biến đổi tương đương)
Được : \(a^8+b^8+c^8=\left(a^4\right)^2+\left(b^4\right)^2+\left(c^4\right)^2\ge a^4b^4+b^4c^4+c^4a^4\)(2)
Lại có : \(a^4b^4+b^4c^4+c^4a^4=\left(a^2b^2\right)^2+\left(b^2c^2\right)^2+\left(c^2a^2\right)^2\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)
\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ac\right)\) (3)
Từ (2) và (3) ta có : \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ac\right)\)
Vậy (1) được chứng minh.
Đặt \(\left\{{}\begin{matrix}x=a+b\\y=c+d\end{matrix}\right.\)
Thế vào đề ta được
\(xy+4\ge2\left(x+y\right)\)
\(\Leftrightarrow xy-2x+4-2y\ge0\)
\(\Leftrightarrow\left(y-2\right)\left(x-2\right)\ge0\)
Chứng minh \(\left(y-2\right)\left(x-2\right)\ge0\)
Ta có : (Đây là phần mình chứng minh nha, có gì sai mong bạn chỉ bảo )
\(\left\{{}\begin{matrix}x=a+b\\y=c+d\end{matrix}\right.\)
Áp dụng bđt Cosi ta được :
\(\left\{{}\begin{matrix}x=a+b\ge2\sqrt{ab}\\y=c+d\ge2\sqrt{cd}\end{matrix}\right.\)
Mà ab=cd=1
Nên \(\left\{{}\begin{matrix}x=a+b\ge2\\y=c+d\ge2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\y-2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)\ge0\)
=> ĐPCM
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\) (do a,b,c >0)
Ta có đpcm
TRẢ LỜI:
Áp dụng BĐT bunhiacopxki
(a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1
=> a² + b² + c² ≥ 30
dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 30
mk ko bt sorry
ai như vậy thì k mk nha