Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : ( x - 2 )2 \(\ge\)0 \(\Leftrightarrow\)x2 - 4x + 4 \(\ge\)0
\(\Rightarrow\) x2 \(\ge\)4x - 4 \(\Rightarrow\)x2 \(\ge\)4 . ( x - 1 ) \(\Rightarrow\)\(\frac{x^2}{x-1}\)\(\ge\)4
\(\Rightarrow\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3c^2}{c-1}\ge4.4+5.4+3.4=48\)
Đặt \(\left(4a;5b;-6c\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x+y+z=-5\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=25\\\frac{xy+yz+zx}{xyz}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+zx\right)=25\\xy+yz+zx=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+z^2=25\) hay \(16a^2+25b^2+36c^2=25\)
\(\dfrac{4a^2}{a-1}=\dfrac{a\left(a^2-1\right)+4}{a-1}=4\left(a+1\right)+\dfrac{4}{a-1}+8\ge8+8=16\)
\(\dfrac{5b^2}{b-1}=5\left(b-1\right)+\dfrac{5}{b-1}+10\ge20\)
\(\dfrac{3c^2}{c-1}=3\left(c-1\right)+\dfrac{3}{c-1}+6=12\)
\(\Rightarrow dpcm\)
3. A có 2n+1 số hạng chia thành n cặp thì thừa 1 số
A= 1/(n+1) + 1/(n+2)...+1/2n+1/(2n+1)+ 1/3n+...+ 1/(3n+1)
Mỗi cặp =1/(2n+1-k)+1/(2n+1+k)=(4n+2)/((2n+1)2-k2) >(4n+2)/(2n+1)2=2/(2n+1)
=>A>(2/(2n+1)).n+1/(2n+1)=1
2/Đặt : \(\left(x,y,z\right)=\left(a^3,b^3,c^3\right)\Rightarrow a^3b^3c^3=1\Rightarrow abc=1\)
Có: \(P=\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)
Ta có: \(a^2-ab+b^2\ge ab\)( dễ dàng CM)
Nên: \(a^3+b^3+1=\left(a+b\right)\left(a^2-ab+b^2\right)+1\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
Từ đó suy ra : \(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}=\frac{abc}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)(1)
Tương tự ta cũng có: \(\frac{1}{b^3+c^3+1}\le\frac{a}{a+b+c}\left(2\right),\frac{1}{c^3+a^3+1}\le\frac{b}{a+b+c}\left(3\right)\)
Cộng (1),(2) và (3) có MAX P=1 với a=b=c=1
Bài 1 :
ÁP dụng BĐT Bunhiacopxki ta có :
\(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2=1\)
\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=0,5\)
Ta có : \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\) ( ý a )
\(\Leftrightarrow a^3+b^3\ge\frac{\left(a+b\right)^3}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b\)
\(4a^3+4b^3+ab\)
\(=3\left(a^3+b^3\right)+\left(a^3+b^3+ab\right)\)
\(\ge3.\frac{\left(a+b\right)^3}{4}+\left(a+b\right)\left(a^2-ab+b^2\right)+ab=\frac{3}{4}+a^2+b^2\ge\frac{3}{4}+\frac{1}{2}=\frac{5}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=0,5\)
Do a ; b ; c > 0 ( GT )
Áp dụng BĐT phụ \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\) , ta có :
\(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow12\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le1\)
Lại có : \(\frac{1}{4a+b+c}=\frac{1}{a+a+a+a+b+c}\le\frac{1}{36}\left(\frac{4}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(1\right)\)
( áp dụng BĐT phụ \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+\frac{1}{a4}+\frac{1}{a5}+\frac{1}{a6}\ge\frac{36}{a1+a2+a3+a4+a5+a6}\) )
CMTT , ta có : \(\frac{1}{4b+a+c}\le\frac{1}{36}\left(\frac{4}{b}+\frac{1}{a}+\frac{1}{c}\right);\frac{1}{4c+a+b}\le\frac{1}{36}\left(\frac{4}{c}+\frac{1}{a}+\frac{1}{b}\right)\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow\frac{1}{4a+b+c}+\frac{1}{4b+a+c}+\frac{1}{4c+a+b}\le\frac{1}{36}\left(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{6}.1=\frac{1}{6}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=3\)