\(\frac{x+3}{2x-2}\)tìm x thuộc z để phân số đó thuộc z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử \(C=\frac{2x+3}{7}=t\left(t\in Z\right)\)
\(\Rightarrow x=\frac{7t-3}{2}\). Để \(x\in Z\) thì t phải lẻ. Nói cách khác \(t=2k+1\left(k\in Z\right)\)
Suy ra \(x=\frac{7\left(2k+1\right)-3}{2}=14k+2\)
Vậy để \(\frac{2x+3}{7}\in Z\) thì \(x=14k+2\left(k\in Z\right)\)
b) Ta thấy \(C=\frac{6x-1}{3x+2}=\frac{\left(6x+4\right)-5}{3x+2}=2-\frac{5}{3x+2}\)
Do x nguyên nên C đạt GTNN khi \(\frac{5}{3x+2}\) lớn nhất. Điều này xảy ra khi 3x + 2 = 2 hay x = 0.
Vậy \(minC=-\frac{1}{2}\) khi x = 0.
a) \(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
để A \(\in\) Z thì x - 2 là ước của 5.
=> x – 2 \(\in\left\{\pm1;\pm5\right\}\)
* x = 3 => A = 6
* x = 7 => A = 2
* x = 1 => A = - 4
* x = -3 => A = 0
b) \(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
- 2 để A \(\in\) Z thì x + 3 là ước của7.
=> x + 3 \(\in\left\{\pm1;\pm7\right\}\)
* x = -2 => A = 5
* x = 4 => A = -1
* x = -4 => A = - 9
* x = -10 => A = -3 .
- Ta có: \(\frac{2x+3}{x+1}=\frac{\left(2x+2\right)+1}{x+1}=\frac{2.\left(x+1\right)+1}{x+1}\)( ĐKXĐ: \(x\ne-1\))
- Để \(a\inℤ\)\(\Leftrightarrow\)\(\frac{2x+3}{x+1}\inℤ\)\(\Leftrightarrow\)\(\frac{2.\left(x+1\right)+1}{x+1}\inℤ\)
- Để \(\frac{2.\left(x+1\right)+1}{x+1}\inℤ\)\(\Leftrightarrow\)\(2.\left(x+1\right)+1⋮x+1\)mà \(2.\left(x+1\right)⋮x+1\)
\(\Rightarrow\)\(1⋮x+1\)\(\Rightarrow\)\(x+1\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ Với \(x+1=1\) + Với \(x+1=-1\)
\(\Leftrightarrow x=0\left(TM\right)\) \(\Leftrightarrow x=-2\)
Vậy \(x\in\left\{-2,0\right\}\)
A=\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}\)