chứng minh rằng: 1/2+1/4+1/8+...+1/2^n < 1 với mọi n là số tự nhiên
giải dùm mk nhé, cảm ơn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MÌNH BIK LÀM CÂU A THUI
=>3n+5 sẽ chia hết cho n-2
nhân n-2 cho 3 thì ta có
3n+5 chia hết cho 3n - 6
=>3n-6+9 chia hết cho 3n - 6
=>3n-6 hay n-2 thuộc ước của 9
****bn tự tìm ước của 9 rồi tìm n nha***
Ừ thì do n+1 và n+2 là 2 stn liên tiếp nên chúng luôn phải nguyên tố cùng nhau hoi
Lời giải:
Đặt $n+1=a^2$ và $2n+1=b^2$ với $a,b$ là số tự nhiên.
Vì $2n+1$ lẻ nên $b^2$ lẻ. SCP lẻ chia $4$ dư $1$ nên $2n+1$ chia $4$ dư $1$
$\Rightarrow 2n\vdots 4$
$\Rightarrow n\vdots 2$
$\Rightarrow n+1=a^2$ lẻ. Ta biết SCP lẻ chia $8$ dư $1$ nên $n+1=a^2$ chia $8$ dư $1$
$\Rightarrow n\vdots 8(1)$
Mặt khác:
Nếu $n$ chia 3 dư $1$ thì $n+1$ chia $3$ dư $2$ (vô lý vì 1 SCP chia 3 dư 0 hoặc 1)
Nếu $n$ chia $3$ dư $2$ thì $2n+1$ chia $3$ dư $2$ (cũng vô lý)
Do đó $n$ chia hết cho $3(2)$
Từ $(1);(2)$ mà $(3,8)=1$ nên $n\vdots 24$ (đpcm)
Câu 1: Vì p và 10p + 1 là các số nguyên tố lớn hơn 3 nên p ≠ 2 vậy p là các số lẻ.
Ta có: 10p + 1 - p = 9p + 1
Vì p là số lẻ nên 9p + 1 là số chẵn ⇒ 9p + 1 = 2k
17p + 1 = 8p + 9p + 1 = 8p + 2k = 2.(4p + k) ⋮ 2
⇒ 17p + 1 là hợp số (đpcm)
Câu 1:
Vì $p$ là stn lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$.
Nếu $p=3k+2$ thì:
$10p+1=10(3k+2)+1=30k+21\vdots 3$
Mà $10p+1>3$ nên không thể là số nguyên tố (trái với giả thiết)
$\Rightarrow p$ có dạng $3k+1$.
Khi đó:
$17p+1=17(3k+1)+1=51k+18=3(17k+6)\vdots 3$. Mà $17p+1>3$ nên $17p+1$ là hợp số
(đpcm)