Cho a,b>0 thỏa mãn \(2b-ab-4\ge0\) Tìm giá trị nhỏ nhất của \(T=\frac{a^2+2b^2}{ab}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Theo giả thiết, ta có: \(2b-ab-4\ge0\Rightarrow2b\ge ab+4\ge4\sqrt{ab}\)
\(\Rightarrow\frac{b}{\sqrt{ab}}\ge2\Rightarrow\frac{b}{a}\ge4\)
Xét \(\frac{1}{T}=\frac{ab}{a^2+2b^2}=\frac{1}{\frac{a}{b}+\frac{2b}{a}}=\frac{1}{\frac{a}{b}+\frac{b}{16a}+\frac{31b}{16a}}\le\frac{1}{2\sqrt{\frac{1}{16}}+\frac{31}{16}.4}=\frac{4}{33}\)
\(\Rightarrow T\ge\frac{33}{4}\)
Đẳng thức xảy ra khi a = 1; b = 4