K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 10

Lời giải:

$A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2002-2001}{2001.2002}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2001}-\frac{1}{2002}$
$=1-\frac{1}{2002}<1$

Mà hiển nhiên $A>0$

$\Rightarrow 0< A< 1$. Do đó $A$ không phải số tự nhiên.

A=1/2^2+1/3^2+...+1/2022^2<1-1/2+1/2-1/3+...+1/2021-1/2022<1

mà A>0

nên 0<A<1

=>A ko là số tự nhiên

8 tháng 4 2015

Hình như đề thiếu phải ko?

8 tháng 9 2017

1 và 2 đều dùng chung một cách giải . 

Tổng của các phân số có tử số là một luôn là một phân số bé hơn một . 

Vậy chúng đều không phải số tự nhiên . 

8 tháng 6 2020

Nguyễn Ngọc Đạt F12 ns vậy cũng nói, tổng các số bé hơn 1 là bé hơn 1 ak ??? 0.5<1 ; 0.75 , 1 mà 0.5 + 0.75 >1 đó